• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q38E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 657
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show the equation \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\) if\(u = f(x,y)\), where \(x = {e^s}\cos t\) and \(y = {e^s}\sin t.\)

The equation is \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Chain rule

"Assume that \(z = f(x,y)\) is a differentiable function of \(x\) and \(y\), where \(x = g(t)\) and \(y = h(t)\) are both differentiable functions of \(t\). Then, \(z\) is differentiable function of \(t\) and\(\frac{{dz}}{{dt}} = \frac{{dz}}{{dx}} \cdot \frac{{dx}}{{dt}} + \frac{{dz}}{{dy}} \cdot \frac{{dy}}{{dt}}\)

Step 2: Find the value of \(\partial u/\partial s\)and \(\partial u/\partial t\)

As given, the function is \(z = u(x,y)\)

\(\begin{aligned}{l}\frac{{\partial u}}{{\partial s}} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial s}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial s}}\\\frac{{\partial u}}{{\partial s}} = {e^s}\cos t\frac{{\partial u}}{{\partial x}} + {e^s}\sin t\frac{{\partial u}}{{\partial y}} \ldots \ldots \ldots (1)\end{aligned}\)

Similarly,

\(\begin{aligned}{l}\frac{{\partial u}}{{\partial t}} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial t}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial t}}\\\frac{{\partial u}}{{\partial t}} = - {e^s}\sin t\frac{{\partial u}}{{\partial x}} + {e^s}\cos t\frac{{\partial u}}{{\partial y}} \ldots \ldots \ldots (2)\end{aligned}\)

Step 3: Calculate the value of \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2}\)

By using equation (1) and (2)

\(\begin{aligned}{l}{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {\left( {{e^s}\cos t\frac{{\partial u}}{{\partial x}} + {e^s}\sin t\frac{{\partial u}}{{\partial y}}} \right)^2} + {\left( { - {e^s}\sin t\frac{{\partial u}}{{\partial x}} + {e^s}\cos t\frac{{\partial u}}{{\partial y}}} \right)^2}\\{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{2s}}{\cos ^2}t{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + 2{e^{2s}}\sin t\cos t\frac{{\partial u}}{{\partial x}}\frac{{\partial u}}{{\partial y}} + {e^{2s}}{\sin ^2}t{\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} + {e^{2s}}{\sin ^2}t{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} - 2{e^{2s}}\sin t\cos t\frac{{\partial u}}{{\partial x}}\frac{{\partial u}}{{\partial y}} + {e^{2s}}{\cos ^2}t{\left( {\frac{{\partial u}}{{\partial y}}} \right)^2}\\{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial x}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial y}}} \right)}^2}} \right)\end{aligned}\)

Multiply both sides of the equation by \({e^{ - 2s}}\) to isolate \({(\partial u/\partial x)^2} + {(\partial u/\partial y)^2}\)

\({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\)

Hence, \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.