Americas
Europe
Q38E
Expert-verifiedShow the equation \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\) if\(u = f(x,y)\), where \(x = {e^s}\cos t\) and \(y = {e^s}\sin t.\)
The equation is \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\).
"Assume that \(z = f(x,y)\) is a differentiable function of \(x\) and \(y\), where \(x = g(t)\) and \(y = h(t)\) are both differentiable functions of \(t\). Then, \(z\) is differentiable function of \(t\) and\(\frac{{dz}}{{dt}} = \frac{{dz}}{{dx}} \cdot \frac{{dx}}{{dt}} + \frac{{dz}}{{dy}} \cdot \frac{{dy}}{{dt}}\)”
As given, the function is \(z = u(x,y)\)
\(\begin{aligned}{l}\frac{{\partial u}}{{\partial s}} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial s}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial s}}\\\frac{{\partial u}}{{\partial s}} = {e^s}\cos t\frac{{\partial u}}{{\partial x}} + {e^s}\sin t\frac{{\partial u}}{{\partial y}} \ldots \ldots \ldots (1)\end{aligned}\)
Similarly,
\(\begin{aligned}{l}\frac{{\partial u}}{{\partial t}} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial t}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial t}}\\\frac{{\partial u}}{{\partial t}} = - {e^s}\sin t\frac{{\partial u}}{{\partial x}} + {e^s}\cos t\frac{{\partial u}}{{\partial y}} \ldots \ldots \ldots (2)\end{aligned}\)
By using equation (1) and (2)
\(\begin{aligned}{l}{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {\left( {{e^s}\cos t\frac{{\partial u}}{{\partial x}} + {e^s}\sin t\frac{{\partial u}}{{\partial y}}} \right)^2} + {\left( { - {e^s}\sin t\frac{{\partial u}}{{\partial x}} + {e^s}\cos t\frac{{\partial u}}{{\partial y}}} \right)^2}\\{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{2s}}{\cos ^2}t{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + 2{e^{2s}}\sin t\cos t\frac{{\partial u}}{{\partial x}}\frac{{\partial u}}{{\partial y}} + {e^{2s}}{\sin ^2}t{\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} + {e^{2s}}{\sin ^2}t{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} - 2{e^{2s}}\sin t\cos t\frac{{\partial u}}{{\partial x}}\frac{{\partial u}}{{\partial y}} + {e^{2s}}{\cos ^2}t{\left( {\frac{{\partial u}}{{\partial y}}} \right)^2}\\{\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial x}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial y}}} \right)}^2}} \right)\end{aligned}\)
Multiply both sides of the equation by \({e^{ - 2s}}\) to isolate \({(\partial u/\partial x)^2} + {(\partial u/\partial y)^2}\)
\({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\)
Hence, \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\).
94% of StudySmarter users get better grades.
Sign up for free