Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q42E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 657
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show the equation\(\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) + \left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right) = {e^{ - 2s}}\left( {\left( {\frac{{{\partial ^2}u}}{{\partial {s^2}}}} \right) + \left( {\frac{{{\partial ^2}u}}{{\partial {t^2}}}} \right)} \right)\) if\(u = f(x,y){\rm{,}}\) where\({\rm{ }}x = {e^s}\cos t\) and\(y = {e^s}\sin t.\)

The answer is stated below.

See the step by step solution

Step by Step Solution

Step 1: Obtain the partial derivative.

The function is\({\rm{z = u(x, y)}}.\)

Obtain the partial derivative\(\frac{{\partial u}}{{\partial s}}.\)

\(\begin{aligned}{l}\frac{{\partial u}}{{\partial s}} = \frac{{\partial u}}{{\partial x}} \cdot \frac{{\partial x}}{{\partial s}} + \frac{{\partial u}}{{\partial y}} \cdot \frac{{\partial y}}{{\partial s}}\\ = \frac{{\partial u}}{{\partial x}} \cdot \frac{\partial }{{\partial s}}\left( {{e^s}\cos t} \right) + \frac{{\partial u}}{{\partial y}} \cdot \frac{\partial }{{\partial s}}\left( {{e^s}\sin t} \right)\\ = \frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + \frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t\end{aligned}\)

Thus, the partial derivative\(\frac{{\partial u}}{{\partial s}} = \frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + \frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t.\)

Obtain the partial derivative\(\frac{{du}}{{dt}}.\)

\(\begin{aligned}{l}\frac{{\partial u}}{{\partial t}} = \frac{{\partial u}}{{\partial x}} \cdot \frac{{\partial x}}{{\partial t}} + \frac{{\partial u}}{{\partial y}} \cdot \frac{{\partial y}}{{\partial t}}\\ = \frac{{\partial u}}{{\partial x}} \cdot \frac{\partial }{{\partial t}}\left( {{e^s}\cos t} \right) + \frac{{\partial u}}{{\partial y}} \cdot \frac{\partial }{{\partial t}}\left( {{e^s}\sin t} \right)\\ = \frac{{\partial u}}{{\partial x}}\left( { - {e^s}\sin t} \right) + \frac{{\partial u}}{{\partial y}}\left( {{e^s}\cos t} \right)\end{aligned}\)

Thus, the partial derivative\(\frac{{\partial u}}{{\partial t}} = \frac{{\partial u}}{{\partial x}}\left( { - {e^s}\sin t} \right) + \frac{{\partial u}}{{\partial y}}\left( {{e^s}\cos t} \right).\)

Obtain\(\frac{{{\partial ^2}u}}{{\partial {s^2}}}.\)

Step 2: Partial derivative with respect to\(s\)and\(t.\)

Take partial derivative of\(\frac{{\partial u}}{{\partial s}}.\)with respect to\(s.\)

\(\begin{aligned}{l}\frac{{{\partial ^2}u}}{{\partial {s^2}}} = \frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + {e^s}\cos t \cdot \frac{\partial }{{\partial s}}\left( {\frac{{\partial u}}{{\partial x}}} \right) + \frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\sin t \cdot \frac{\partial }{{\partial s}}\left( {\frac{{\partial u}}{{\partial y}}} \right)\\ = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot \frac{{\partial x}}{{\partial s}} + \frac{{{\partial ^2}u}}{{\partial y\partial x}} \cdot \frac{{\partial y}}{{\partial s}}} \right) + }\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot \frac{{\partial y}}{{\partial s}} + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot \frac{{\partial x}}{{\partial s}}} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{\frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot {e^s}\cos t + \frac{{{\partial ^2}u}}{{\partial y\partial x}} \cdot {e^s}\sin t} \right) + }\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot {e^s}\sin t + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot {e^s}\cos t} \right)}\end{aligned}} \right)\end{aligned}\)

The partial derivatives\(\frac{{{\partial ^2}u}}{{\partial y\partial x}} = \frac{{{\partial ^2}u}}{{\partial x\partial y}}\), as functions are continuous.

Simplify\(\frac{{{\partial ^2}u}}{{\partial {s^2}}}\)as follows.

\(\begin{aligned}{l}\frac{{{\partial ^2}u}}{{\partial {s^2}}} = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot {e^s}\cos t + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot {e^s}\sin t} \right) + }\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot {e^s}\sin t + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot {e^s}\cos t} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot {e^s}\cos t + \frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^{2s}}{{\cos }^2}t \cdot \frac{{{\partial ^2}u}}{{\partial {x^2}}} + }\\{2{e^{2s}}\cos t\sin t \cdot \frac{{{\partial ^2}u}}{{\partial x\partial y}} + {e^{2s}}{{\sin }^2}t \cdot \frac{{{\partial ^2}u}}{{\partial {y^2}}}}\end{aligned}} \right)\end{aligned}\)

Similarly, find the value of\(\frac{{{\partial ^2}u}}{{\partial {t^2}}}\) as shown.

Obtain\(\frac{{{\partial ^2}u}}{{\partial {t^2}}}\)

Take partial derivative on both sides of\(\frac{{\partial u}}{{\partial t}}\) with respect to\(t.\)

\(\begin{aligned}{l}\frac{{{\partial ^2}u}}{{\partial {t^2}}} = \frac{{\partial u}}{{\partial x}} \cdot \left( { - {e^s}\cos t} \right) - {e^s}\sin t \cdot \frac{\partial }{{\partial t}}\left( {\frac{{\partial u}}{{\partial x}}} \right) + \frac{{\partial u}}{{\partial y}} \cdot \left( { - {e^s}\sin t} \right) + {e^s}\cos t \cdot \frac{\partial }{{\partial t}}\left( {\frac{{\partial u}}{{\partial y}}} \right)\\ = \left( {\begin{aligned}{*{20}{l}}{\left. {\frac{{\partial u}}{{\partial x}} \cdot \left( { - {e^s}\cos t} \right) - {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot \frac{{\partial x}}{{\partial t}} + \frac{{{\partial ^2}u}}{{\partial y\partial x}} \cdot \frac{{\partial y}}{{\partial t}}} \right) - } \right)}\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot \frac{{\partial y}}{{\partial s}} + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot \frac{{\partial x}}{{\partial s}}} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot \left( { - {e^s}\cos t} \right) - {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot {e^s}\cos t + \frac{{{\partial ^2}u}}{{\partial y\partial x}} \cdot {e^s}\sin t} \right) - }\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot {e^s}\sin t + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot {e^s}\cos t} \right)}\end{aligned}} \right)\end{aligned}\)

The partial derivatives\(\frac{{{\partial ^2}u}}{{\partial y\partial x}} = \frac{{{\partial ^2}u}}{{\partial x\partial y}}\), as the functions are continuous.

Thus, it can be simplified as follows.

\(\begin{aligned}{l}\frac{{{\partial ^2}u}}{{\partial {t^2}}} = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot \left( { - {e^s}\cos t} \right) - {e^s}\sin t\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} \cdot {e^s}\cos t + \frac{{{\partial ^2}u}}{{\partial y\partial x}} \cdot {e^s}\sin t} \right) - }\\{\frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^s}\cos t\left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}} \cdot {e^s}\sin t + \frac{{{\partial ^2}u}}{{\partial x\partial y}} \cdot {e^s}\cos t} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{l}}{\frac{{\partial u}}{{\partial x}} \cdot \left( { - {e^s}\cos t} \right) - \frac{{\partial u}}{{\partial y}} \cdot {e^s}\sin t + {e^{2s}}{{\sin }^2}t\frac{{{\partial ^2}u}}{{\partial {x^2}}} - }\\{2{e^{2s}}\cos t\sin t\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {e^{2s}}{{\cos }^2}t\frac{{{\partial ^2}u}}{{\partial {y^2}}}}\end{aligned}} \right)\end{aligned}\)

Find the value of the Right-Hand side of the equation, \({e^{ - 2s}}\left( {\frac{{{\partial ^2}u}}{{\partial {s^2}}} + \frac{{{\partial ^2}u}}{{\partial {t^2}}}} \right).\)

\(\begin{aligned}{l}\frac{{{\partial ^2}u}}{{\partial {s^2}}} + \frac{{{\partial ^2}u}}{{\partial {t^2}}} = {e^{2s}}{\cos ^2}t\frac{{{\partial ^2}u}}{{\partial {x^2}}} + {e^{2s}}{\sin ^2}t\frac{{{\partial ^2}u}}{{\partial {x^2}}} + {e^{2s}}{\sin ^2}t\frac{{{\partial ^2}u}}{{\partial {y^2}}} + {e^{2s}}{\cos ^2}t\frac{{{\partial ^2}u}}{{\partial {y^2}}}{e^{ - 2s}}\left( {\frac{{{\partial ^2}u}}{{\partial {s^2}}} + \frac{{{\partial ^2}u}}{{\partial {t^2}}}} \right)\\ = {e^{ - 2s}}\left\{ {{e^{2s}}{{\cos }^2}t\frac{{{\partial ^2}u}}{{\partial {x^2}}} + {e^{2s}}{{\sin }^2}t\frac{{{\partial ^2}u}}{{\partial {x^2}}} + {e^{2s}}{{\sin }^2}t\frac{{{\partial ^2}u}}{{\partial {y^2}}} + {e^{2s}}{{\cos }^2}t\frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right\}\\ = \left( {{{\cos }^2}t + {{\sin }^2}t} \right)\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right)\\ = \frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}\end{aligned}\)

Thus, the Left-Hand side is obtained.

Hence, \(\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) + \left( {\frac{{{\partial _u}u}}{{\partial {y^2}}}} \right) = {e^{ - 2s}}\left( {\left( {\frac{{{\partial ^2}u}}{{\partial {s^2}}}} \right) + \left( {\frac{{{\partial ^2}u}}{{\partial {t^2}}}} \right)} \right)\) is proved.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.