StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q48E

Expert-verifiedFound in: Page 658

Book edition
2nd

Author(s)
James Stewart

Pages
830 pages

ISBN
9781133112280

**Equation 6 is a formula for the derivative \(\frac{{dy}}{{dx}}\) of a function defined implicitly by an equation \(F(x,y) = 0\), provided that \(F\) is differentiable and \({F_y} \ne 0\). Prove that if \(F\) has continuous second derivatives, then a formula for the second derivative of \(y\) is**

\(\frac{{{d^2}y}}{{d{x^2}}} = - \frac{{{F_{xx}}F_y^2 - 2{F_{xy}}{F_s}{F_y} + {F_{yy}}F_x^2}}{{F_y^3}}\)

It is proved that the formula for second derivative of \(y\) is \(\frac{{{d^2}y}}{{d{x^2}}} = - \frac{{{F_y}^2{F_{xx}} + {F_x}^2{F_{yy}} - 2{F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\).

**The Chain rule is given by**

**Suppose that **\(z = f(x,y)\)** is a differentiable function of **\(x\)** and **\(y\)**, where **\(x = g(s,t)\)** and **\(y = h(s,t)\)** are differentiable functions of **\(s\)** and **\(t\)**. then **\(\frac{{\partial z}}{{\partial s}} = \frac{{\partial z}}{{\partial x}}\frac{{\partial x}}{{\partial s}} + \frac{{\partial z}}{{\partial y}}\frac{{\partial y}}{{\partial s}}\)** and **\(\frac{{\partial z}}{{\partial t}} = \frac{{\partial z}}{{\partial x}}\frac{{\partial x}}{{\partial t}} + \frac{{\partial z}}{{\partial y}}\frac{{\partial y}}{{\partial t}}\)

** **

**Clairaut's Theorem is given by**

**Suppose **\(f\)** is defined on a disk **\(D\)** that contains the points **\((a,b)\)**. If the function **\({f_{xy}}\)** and **\({f_{yx}}\)** are both continuous on** \(D\)**, then **\({f_{xy}}(a,b) = {f_{yx}}(a,b)\)**.**

The function, \(F(x,y) = 0\) is differentiable and \({F_y} \ne 0\).

Equation 6: \(\frac{{dy}}{{dx}} = - \frac{{\frac{{\partial F}}{{dx}}}}{{\frac{{\partial F}}{{\partial y}}}} = - \frac{{{F_x}}}{{{F_y}}}\).

The implicit function is \(F(x,y) = 0\).

From equation (6), it is clear that \(\frac{{dy}}{{dx}} = - \frac{{{F_x}}}{{{F_y}}}\).

Let \(G(x,y) = - \frac{{{F_x}}}{{{F_y}}}\) then \(\frac{{dy}}{{dx}} = G(x,y)\).

Thus, \(\frac{{dy}}{{dx}} = G(x,y).(1)\)

Differentiate the equation (1) with respect to \(x\) on both sides by using chain rule,

\(\frac{d}{{dx}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{dx}}(G(x,y))\)

\(\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\partial G}}{{\partial x}} \cdot \frac{{dx}}{{dx}} + \frac{{\partial G}}{{\partial y}} \cdot \frac{{dy}}{{dx}}(2)\)

Take partial derivative of \(G(x,y) = - \frac{{{F_x}}}{{{F_y}}}\) with respect to \(x\) and obtain \(\frac{{\partial G}}{{\partial x}}\).

\(\begin{aligned}{l}\frac{{\partial G}}{{\partial x}} = \frac{\partial }{{\partial x}}\left( { - \frac{{{F_x}}}{{{F_y}}}} \right)\\ = - \left( {\frac{{{F_y}{F_{xx}} - {F_x}{F_{yx}}}}{{{{\left( {{F_y}} \right)}^2}}}} \right)\\ = \frac{{{F_x}{F_{yx}} - {F_y}{F_{xx}}}}{{{F_y}^2}}\end{aligned}\)

Take partial derivative of \(G(x,y) = - \frac{{{F_x}}}{{{F_y}}}\) with respect to \(y\) and obtain \(\frac{{\partial G}}{{\partial y}}\).

\(\begin{aligned}{l}\frac{{\partial G}}{{\partial y}} = \frac{\partial }{{\partial y}}\left( { - \frac{{{F_x}}}{{{F_y}}}} \right)\\ = - \left( {\frac{{{F_y}{F_{xy}} - {F_x}{F_{yy}}}}{{{{\left( {{F_y}} \right)}^2}}}} \right)\\ = \frac{{{F_x}{F_{yy}} - {F_y}{F_{xy}}}}{{{F_y}^2}}\end{aligned}\)

Substitute \(\frac{{\partial G}}{{\partial x}}\) and \(\frac{{\partial G}}{{\partial y}}\) in the equation (2) as follows

\(\begin{aligned}{l}\frac{{{d^2}y}}{{d{x^2}}} = \left( {\frac{{{F_x}{F_{yx}} - {F_y}{F_{xx}}}}{{{F_y}^2}}} \right)\frac{{dx}}{{dx}} + \left( {\frac{{{F_x}{F_{yy}} - {F_y}{F_{xy}}}}{{{F_y}^2}}} \right)\frac{{dy}}{{dx}}\\ = \left( {\frac{{{F_x}{F_{yx}} - {F_y}{F_{xx}}}}{{{F_y}^2}}} \right)(1) + \left( {\frac{{{F_x}{F_{yy}} - {F_y}{F_{xy}}}}{{{F_y}^2}}} \right)\left( { - \frac{{{F_x}}}{{{F_y}}}} \right)\\ = \frac{{{F_x}{F_{yx}} - {F_y}{F_{xx}}}}{{{F_y}^2}} - \frac{{{F_x}^2{F_{yy}}}}{{{F_y}^3}} + \frac{{{F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\\ = \frac{{{F_x}{F_y}{F_{yx}} - {F_y}^2{F_{xx}} - {F_x}^2{F_{yy}} + {F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\end{aligned}\)

By Clairaut's theorem, it is known that if the function \(F\) is continuous then \({F_{xy}} = {F_{yx}}\) are the same.

\(\begin{aligned}{l}\frac{{{d^2}y}}{{d{x^2}}} = \frac{{{F_x}{F_y}{F_{xy}} - {F_y}^2{F_{xx}} - {F_x}^2{F_{yy}} + {F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\\ = \frac{{ - {F_y}^2{F_{xx}} - {F_x}^2{F_{yy}} + 2{F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\\ = - \frac{{{F_y}^2{F_{xx}} + {F_x}^2{F_{yy}} - 2{F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\end{aligned}\)

Therefore, it is proved that the formula for second derivative of \(y\) is \(\frac{{{d^2}y}}{{d{x^2}}} = - \frac{{{F_y}^2{F_{xx}} + {F_x}^2{F_{yy}} - 2{F_x}{F_y}{F_{xy}}}}{{{F_y}^3}}\).

94% of StudySmarter users get better grades.

Sign up for free