• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 463
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show that the series is convergent. How many terms of the series do we need to add in order to find the sum to the indicated accuracy?

\(\sum\limits_{n = 0}^\infty {{{( - 1)}^{n - 1}}n{e^{ - n}}{\rm{ (}}|{\rm{error}}|{\rm{ }} < 0.01)} \)

Yes, the series is convergent and the number of terms we need to add atleast \(6\) terms.

See the step by step solution

Step by Step Solution

Alternating series test:

\(n{e^{ - n}}\) will always be positive for positive \(n\) and \({( - 1)^{n - 1}}\) is positive on odd terms and negative on even terms.

Also, the terms decrease in size. For any \(k\),consider the size difference between the \({(k + 1)^{{\rm{th}}}}\) and \({k^{{\rm{th}}}}\) term

\(\begin{aligned}(k + 1){e^{ - (n + 1)}} - n{e^{ - n}} &= \frac{{(n + 1)}}{{{e^{n + 1}}}} - \frac{{ - n}}{{{e^n}}}\\ &= \frac{{{e^n}(n + 1) - n{e^{n + 1}}}}{{{e^{2n + 1}}}}\\ &= \frac{{{e^n}\left( {n(1 - e) + 1} \right)}}{{{e^{2n + 1}}}}\end{aligned}\)

\(1 - e < - 1\) and \(n \ge 1\)

So, \(\begin{aligned}n(1 - e) < - 1\\n(1 - e) + 1 < 0\end{aligned}\)

So the terms are decreasing in size .

Checking the limit

\(\mathop {\lim }\limits_{n \to \infty } {\rm{ }}n{e^{ - n}} = \mathop {\lim }\limits_{n \to \infty } {\rm{ }}\frac{n}{{{e^n}}}\)

If \(\mathop {\lim }\limits_{n \to \infty } {\rm{ }}\frac{n}{{{e^n}}}\) exists,

Let \(x = n\), then \(\mathop {\lim }\limits_{x \to \infty } {\rm{ }}\frac{x}{{{e^x}}} = \mathop {\lim }\limits_{n \to \infty } {\rm{ }}\frac{n}{{{e^n}}}\)

Then \(\begin{aligned} \mathop {\lim }\limits_{x \to \infty } {\rm{ }}\frac{x}{{{e^x}}} &= \mathop {\lim }\limits_{n \to \infty } {\rm{ }}\frac{1}{{{e^x}}}\\\mathop {\lim }\limits_{x \to \infty } {\rm{ }}\frac{x}{{{e^x}}} &= 0\end{aligned}\)

Therefore, \(\mathop {\lim }\limits_{n \to \infty } {\rm{ }}\frac{n}{{{e^n}}} = 0\)

So, the series is converging.

Let bn be the sequence \(n{e^{ - n}}\), \(S = \sum\limits_{n = 1}^\infty {{{( - 1)}^{n - 1}}n{e^{ - n}}} \)

Then \(|S - {S_n}| \le {b_{n + 1}}\)

We want \(n\) with \({b_{n + 1}} < 0.01\)

So that

\(\begin{aligned} (n + 1){e^{ - (n + 1)}} < 0.01\\\frac{{n + 1}}{{0.01}} < {e^{n + 1}}\end{aligned}\)

Note that \(\frac{{{e^6}}}{6} = 67.2 < 100\), while \(\frac{{{e^7}}}{7} = 156.6 < 100\)

So, \(6\) is the least number that works for \(n + 1\)

Therefore, we need to add atleast \(6\) terms

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.