Americas
Europe
Q30E
Expert-verifiedDetermine whether the series is convergent or divergent:\(\sum\limits_{n = 1}^\infty {\frac{{n + 5}}{{\sqrt(3){{{n^7} + {n^2}}}}}} \).
The series \(\sum\limits_{n = 1}^\infty {\frac{{n + 5}}{{\sqrt(3){{{n^7} + {n^2}}}}}} \) is convergent.
We have the series \(\sum\limits_{n = 1}^\infty {\frac{{n + 5}}{{\sqrt(3){{{n^7} + {n^2}}}}}} \)
Take \({a_n} = \frac{{n + 5}}{{\sqrt(3){{{n^7} + {n^2}}}}}\), \({b_n} = \frac{n}{{\sqrt(3){{{n^7}}}}}\)
\( \Rightarrow {b_n} = \frac{1}{{{n^{\frac{4}{3}}}}}\)
\(\mathop {\lim }\limits_{n \to \infty } \frac{{{a_n}}}{{{b_n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{n + 5}}{{\sqrt(3){{{n^7} + {n^2}}}}}{n^{\frac{4}{3}}}\)
\( = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^{\frac{7}{3}}} + 5{n^{\frac{4}{3}}}}}{{{{({n^7} + {n^2})}^{\frac{1}{3}}}}}\)
\( = \mathop {\lim }\limits_{n \to \infty } \frac{{1 + 5{n^{\frac{4}{3} - \frac{7}{3}}}}}{{{{(1 + \frac{1}{{{n^5}}})}^{\frac{1}{3}}}}}\)
\(\mathop {\lim }\limits_{n \to \infty } \frac{{1 + \frac{5}{n}}}{{{{(1 + \frac{1}{{{n^5}}})}^{\frac{1}{3}}}}}\)
Now, \(\mathop {\lim }\limits_{n \to \infty } \frac{{{a_n}}}{{{b_n}}} = \frac{{1 + \frac{5}{n}}}{{{{(1 + \frac{1}{{{n^5}}})}^{\frac{1}{3}}}}} = 1 > 0\)
Since, limit exists and \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^{\frac{4}{3}}}}}} \) converges by p-series test with \(p = \frac{4}{3} > 1\).
Therefore, the given series also converges by limit comparison test.
Hence, the series is convergent.
94% of StudySmarter users get better grades.
Sign up for free