Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q45E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 444
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the value of \(c\) if \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)

\(c = \frac{{ - 1 + \sqrt 3 }}{2}\)

See the step by step solution

Step by Step Solution

Form reduction.

Given that this equation holds:\(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \).

This is of the form of a geometric series with ratio \({(1 + c)^{ - 1}}\)

\(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = {{(1 + c)}^{ - 2}}} + {(1 + c)^{ - 3}} + {(1 + c)^{ - 4}} + .... = {\left( {\frac{1}{{1 + c}}} \right)^2} + {\left( {\frac{1}{{1 + c}}} \right)^3} + {\left( {\frac{1}{{1 + c}}} \right)^4} + ...\)

\( = \sum\limits_{n = 1}^\infty {{{\left( {\frac{1}{{1 + c}}} \right)}^2}.{{\left( {\frac{1}{{1 + c}}} \right)}^{n - 1}}} \)

Comparison with geometric series

After comparison with \(\sum\limits_{n = 1}^\infty {a{r^{n - 1}}} \), we observe that \(a = {\left( {\frac{1}{{1 + c}}} \right)^2},r = \frac{1}{{1 + c}}\).

Using geometric formula further, \(\begin{aligned}\sum\limits_{n = 1}^\infty {a{r^{n - 1}}} & = \frac{a}{{1 - r}} = \sum\limits_{n = 1}^\infty {{{\left( {\frac{1}{{1 + c}}} \right)}^2}.} {\left( {\frac{1}{{1 + c}}} \right)^{n - 1}} = \frac{{{{\left( {\frac{1}{{1 + c}}} \right)}^2}}}{{1 - \frac{1}{{1 + c}}}} = \frac{1}{{{{(1 + c)}^2}}} \times \frac{{(1 + c)}}{c}\\ = \frac{1}{{c + {c^2}}}\end{aligned}\)

Now we combine this obtained result with \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)(given).

\(2 = \frac{1}{{c + {c^2}}} \Rightarrow 2{c^2} + 2c - 1 = 0\)

Solving quadratic formula

Solving using quadratic formula, we obtain:

\(c = \frac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(2)( - 1)} }}{{2(2)}} = \frac{{ - 2 \pm \sqrt {4 + 8} }}{4} = \frac{{ - 2 \pm 2\sqrt 3 }}{4} = \frac{{ - 1 \pm \sqrt 3 }}{2}\)

Now for the given series to be convergent geometric series \(|r| < 1 \Rightarrow |\frac{1}{{1 + c}}| < 1 \Rightarrow |1 + c| > 1\).

We also see that \(\frac{{ - 1 + \sqrt 3 }}{2} = 0.366{\rm{ and }}\frac{{ - 1 - \sqrt 3 }}{2} = - 1.366\).

Hence we conclude that \(c = \frac{{ - 1 + \sqrt 3 }}{2}\)since \(|r| < 1 \Rightarrow |\frac{1}{{1 + c}}| < 1 \Rightarrow |1 + c| > 1\) holds true for this value of \(c\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.