Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 443
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

\(\sum\limits_{n = 1}^\infty {\frac{1}{{\ln (n + 1)}}} \)

Convergent.

See the step by step solution

Step by Step Solution

Definition

A convergent series is an infinite sum of a sequence of numbers\(\sum\limits_{n = 1}^\infty {{a_n}} \) that adds up to finite number.

A divergent series is a series that does not converge, so if add up all of the terms of the series\(\sum\limits_{n = 1}^\infty {{a_n}} \) don't have finite sum.

Find terms

Consider the series\(\sum\limits_{n = 1}^\infty {\frac{1}{{\ln (n + 1)}}} \)

When\(n = 1\)

\(\begin{aligned}\sum\limits_{n = 1}^\infty {\frac{1}{{\ln (n + 1)}}} &= \frac{1}{{\ln (1 + 1)}}\\ &= \frac{1}{{\ln (2)}}\\ &= 1.4427\end{aligned}\)

When\(n = 2\),

\(\begin{aligned}{s_2} &= \sum\limits_{n = 1}^2 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}}\\ &= 1.4427 + 0.91023\\ &= 2.35293\end{aligned}\)

find terms

When\(n = 3\),

\(\begin{aligned}{s_3} &= \sum\limits_{n = 1}^3 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}}\\ &= 3.0743\end{aligned}\)

When\(n = 4\),

\(\begin{aligned}{s_4} &= \sum\limits_{n = 1}^4 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}} + \frac{1}{{\ln (5)}}\\ &= 3.6956\end{aligned}\)

Find terms

When\(n = 5\),

\(\begin{aligned}{s_5} &= \sum\limits_{n = 1}^5 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}} + \frac{1}{{\ln (5)}} + \frac{1}{{\ln (6)}}\\ &= 4.2537\end{aligned}\)

When\(n = 6\),

\(\begin{aligned}{s_6} &= \sum\limits_{n = 1}^6 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}} + \frac{1}{{\ln (5)}} + \frac{1}{{\ln (6)}} + \frac{1}{{\ln (7)}}\\ &= 4.7676\end{aligned}\)

Find terms

When\(n = 7\),

\(\begin{aligned}{s_7} &= \sum\limits_{n = 1}^7 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}} + \frac{1}{{\ln (5)}} + \frac{1}{{\ln (6)}} + \frac{1}{{\ln (7)}} + \frac{1}{{\ln (8)}}\\ &= 5.2485{\rm{ }}\\{\rm{When }}n = 8\\{s_8} &= \sum\limits_{n = 1}^8 {\frac{1}{{\ln (n + 1)}}} \\ &= \frac{1}{{\ln (2)}} + \frac{1}{{\ln (3)}} + \frac{1}{{\ln (4)}} + \frac{1}{{\ln (5)}} + \frac{1}{{\ln (6)}} + \frac{1}{{\ln (7)}} + \frac{1}{{\ln (8)}} + \frac{1}{{\ln (9)}}\\ &= 5.7036\end{aligned}\)

Check convergence

Using result that if the sequence\(\left\{ {{s_n}} \right\}\) is convergent, then \(\mathop {\lim }\limits_{n \to \infty } {s_n} = s\)exists is a real number.

So, the series \(\sum {{a_n}} \)is called convergent and the sequence \(\left\{ {{s_n}} \right\}\)is divergent, then the series is called divergent.

Let\({a_n} = \frac{1}{{\ln (n + 1)}}\)then

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } {a_n} &= \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\ln (n + 1)}}\\ &= \frac{1}{{\ln (\infty )}}\\ &= \frac{1}{\infty }\\ &= 0{\rm{ (define) }}\end{aligned}\)

Therefore, the series is convergent.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.