Suggested languages for you:

Americas

Europe

Q50E

Expert-verifiedFound in: Page 435

Book edition
2nd

Author(s)
James Stewart

Pages
830 pages

ISBN
9781133112280

**Prove the Continuity and Convergence theorem.**

Using the 2^{nd} definition of limit of a sequence, it is proved that\(\mathop {\lim }\limits_{n \to \infty } f({a_n}) = f(L)\)if\(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\)and the function\(f\)is continuous at \(L.\)

If \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\)and the function\(f\)is continuous at \(L\), then**\(\mathop {\lim }\limits_{n \to \infty } f({a_n}) = f(L)\)**where

\(L\)is the limit of the sequence {\({a_n}\)},\(f\)is the function continuous at \(L.\)

For every \(\varepsilon > 0\), there exists a positiveinteger\(N\)such thatfor \(n > N\), \(\left| {{a_n} - L} \right| < \varepsilon .\)

As the function\(f\)is continuous at \(L\), for every \(\varepsilon ' > 0,\)there is a corresponding \(\varepsilon > 0.\)

Such that,

If \(\left| {{a_n} - L} \right| < \varepsilon \) then,

\(\left| {f({a_n}) - f(L)} \right| < \varepsilon '\)

\(\left| {f({a_n}) - f(L)} \right| < \varepsilon '\)

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } f({a_n}) = f(L).\)

Therefore, if \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\)and the function \(f\)is continuous at \(L\), then**\(\mathop {\lim }\limits_{n \to \infty } f({a_n}) = f(L)\)**

94% of StudySmarter users get better grades.

Sign up for free