• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q52E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 435
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a)Show that if \(\mathop {\lim }\limits_{n \to \infty } {a_2}_n = L\)and \(\mathop {\lim }\limits_{n \to \infty } {a_{2n + 1}} = L,\) then {\({a_n}\)} is convergent and \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\).

(a) If \({a_1} = 1\) and

\({a_{n + 1}} = 1 + \frac{1}{{1 + {a_n}}}\)

Find the first eight terms of the sequence {\({a_n}\)}. Then use part(a) to show that \(\mathop {\lim }\limits_{n \to \infty } {a_n} = \sqrt 2 \). This gives the continued fraction expansion

\(\sqrt 2 = 1 + \frac{1}{{2 + \frac{1}{{2 + ...}}}}\)

(a) Using limit of a sequence definition, it is shown that \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\) and {\({a_n}\)} is convergent.

(b) The first eight terms of the sequence {\({a_n}\)} are, \(1,\frac{3}{2},\frac{7}{5},\frac{{17}}{{12}},\frac{{41}}{{29}},\frac{{99}}{{70}},\frac{{239}}{{169}}\)and\(\frac{{577}}{{408}}\).

See the step by step solution

Step by Step Solution

Subpart (a) Given data:-

The sub sequences {\({a_{2n}}\)} and {\({a_{2n + 1}}\)} are converges to \(L\). i.e., \(\mathop {\lim }\limits_{n \to \infty } {a_{2n}} = L\)and \(\mathop {\lim }\limits_{n \to \infty } {a_{2n + 1}} = L.\)

ApplyingDefinition of limit of a sequence:-

We have,

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {a_n}\)

from the limit of a sequence definition, for every \(\varepsilon > 0,\)there exists a positive integer \(N\)such that for \(n > N,\)

\(\left| {{a_n} - L} \right| < \varepsilon \).

Applying limit of a sequence to the given sub sequences {\({a_{2n}}\)} and {\({a_{2n + 1}}\) } :-

As \(\mathop {\lim }\limits_{n \to \infty } {a_{2n}} = L\)and \(\mathop {\lim }\limits_{n \to \infty } {a_{2n + 1}} = L\), then for every \(\varepsilon > 0\), there exists a positive integer

\({N_1}\), such that for \(n > {N_1},\)

\(\left| {{a_{2n}} - L} \right| < \varepsilon \).

Also, for every \(\varepsilon > 0,\)there exists a positive integer \({N_2}\) such that for \(n > {N_2},\)

\(\left| {{a_{2n + 1}} - L} \right| < \varepsilon \).

Simplifying further for \(n > N\):-

Consider \(N = \max \{ {N_1},2{N_1} + 1\} \)

For \(n > N,\)

\(n = 2k\)or \(n = 2k + 1\), for \(k \in N.\)

If \(n = 2k\), then \(\left| {{a_{2k}} - L} \right| < \varepsilon \)as \(k > {N_1}.\)

If \(n = 2k + 1\), then \(\left| {{a_{2k + 1}} - L} \right| < \varepsilon \)as \(k > {N_2}.\)

Therefore, the sequence {\({a_n}\)} is convergent, and \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L.\)

Subpart (b):Given data:-

First term of the sequence,

\({a_1} = 1,\)and,

\({a_{n + 1}} = 1 + \frac{1}{{1 + {a_n}}}\).

Substituting \(n = 1\) and \(n = 2\)in the given term:-

For \(n = 1\) to the term \({a_{n + 1}} = 1 + \frac{1}{{1 + {a_n}}}\),

\({a_{1 + 1}} = 1 + \frac{1}{{1 + {a_1}}}\)

\({a_2} = 1 + \frac{1}{{1 + 1}} = 1 + \frac{1}{2} = \frac{3}{2}\)

For \(n = 2,\)

\(\begin{aligned}{a_{2 + 1}} = 1 + &\frac{1}{{1 + {a_2}}}\\{a_3} = 1 + &\frac{1}{{1 + \frac{3}{2}}}\\{a_3} = 1 + &\frac{2}{5}\\{a_3} =&\frac{7}{5}.\end{aligned}\)

Substituting \(n = 3\)and \(n = 4\):-

For \(n = 3,\)

\(\begin{aligned}{}{a_{3 + 1}} = 1 + \frac{1}{{1 + {a_3}}}\\{a_4} = 1 + \frac{1}{{1 + \frac{7}{5}}}\\{a_4} = 1 + \frac{5}{{12}}\\{a_4} = \frac{{17}}{{12}}.\end{aligned}\)

For \(n = 4,\)

\(\begin{aligned}{}{a_{4 + 1}} = 1 + \frac{1}{{1 + {a_4}}}\\{a_5} = 1 + \frac{1}{{1 + \frac{{17}}{{12}}}}\\{a_5} = 1 + \frac{{12}}{{29}}\\{a_5} = \frac{{41}}{{29}}.\end{aligned}\)

Substituting \(n = 5\), \(n = 6\) and \(n = 7\):-

For \(n = 5,\)

\(\begin{aligned}{}{a_{5 + 1}} = 1 + \frac{1}{{1 + {a_5}}}\\{a_6} = 1 + \frac{1}{{1 + \frac{{41}}{{29}}}}\\{a_6} = 1 + \frac{{29}}{{70}}\\{a_6} = \frac{{99}}{{70}}.\end{aligned}\)

For \(n = 6,\)

\(\begin{aligned}{}{a_{6 + 1}} = 1 + \frac{1}{{1 + {a_6}}}\\{a_7} = 1 + \frac{1}{{1 + \frac{{99}}{{70}}}}\\{a_7} = 1 + \frac{{70}}{{169}}\\{a_7} = \frac{{239}}{{169}}.\end{aligned}\)

For \(n = 7,\)

\(\begin{aligned}{}{a_{7 + 1}} = 1 + \frac{1}{{1 + {a_7}}}\\{a_8} = 1 + \frac{1}{{1 + \frac{{239}}{{169}}}}\\{a_8} = 1 + \frac{{169}}{{408}}\\{a_8} = \frac{{577}}{{408}}.\end{aligned}\)

Therefore, the first eight terms of the sequence are\(1,\frac{3}{2},\frac{7}{5},\frac{{17}}{{12}},\frac{{41}}{{29}},\frac{{99}}{{70}},\frac{{239}}{{169}},\frac{{577}}{{408}}\)

Using part(a) for showing \(\mathop {\lim }\limits_{n \to \infty } {a_n} = \sqrt 2 \)

Consider the two sub sequences of {\({a_n}\)} as,

Odd terms – \(\{ 1,\frac{7}{5},\frac{{41}}{{29}},\frac{{239}}{{169}},...\} \)and

Even terms - \(\{ \frac{3}{2},\frac{{17}}{{12}},\frac{{99}}{{70}},\frac{{577}}{{408}},...\} \)

Odd terms sequence is increasing and tending to \(1.41421356\).

Even terms sequence is decreasing and tending to \(1.41421356\).

Therefore, the sequence, \({a_n}\)approaches to \(\sqrt 2 \) (Since, \(\sqrt 2 = 1.41421356\))

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.