• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q11E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 326
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral: \(\int {t{{\sin }^2}tdt} \)

To evaluate the integral \(\int {t{{\sin }^2}tdt} \) , we will use identity: \({\sin ^2}t = \frac{{1 - \cos 2t}}{2}\) followed by the integration formula given by \(\int {uvdx = u\int {vdx - \int {\frac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} } } \)

Firstly, we will use \({\sin ^2}t = \frac{{1 - \cos 2t}}{2}\)

Then the product of two functions of ‘t’ will be formed which will be further solved by

By parts formula: \(\int {uvdx = u\int {vdx - \int {\frac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} } } \) will help to evaluate one given integral.

\( \Rightarrow \int {t{{\sin }^2}tdt} = \frac{1}{8}\left( {2{t^2} - 2t\sin 2t - \cos 2t} \right) + c\)

See the step by step solution

Step by Step Solution

Step-1:  Using trigonometric double angle formula: -

Let \(I = \int {t{{\sin }^2}tdt} \)

Now, as \({\sin ^2}t = \frac{{1 - \cos 2t}}{2}\)

\(I = \int {t\left( {\frac{{1 - \cos 2t}}{2}} \right)} dt\)

Step-2:  Splitting of integral

Now, split the integral as:

\(I = \frac{1}{2}\int {tdt - \frac{1}{2}\int {t\cos 2tdt \to (1)} } \)

Step-3:  Using by parts integration formula

The term can be integrated easily. For the II term we will use by parts formula

i.e., \(\int {uvdt = u\int {vdt - \int {\frac{{du}}{{dt}}\left( {\int {vdt} } \right)dt} } } \)

Let II term be denoted by \({I_2}\)

\(\begin{aligned}{l}{I_2} &= - \frac{1}{2}\int {t\cos 2tdt} \\ &= - \frac{1}{2}\left( {t\int {\cos 2tdt - \int {\left( {\frac{{dt}}{{dx}}\int {\cos 2tdt} } \right)} } } \right)dt\\ &= - \frac{{t\sin 2t}}{4} - \frac{{\cos 2t}}{8} + c \to (2)\end{aligned}\)

Step-4:  Using \({I_2}\) in \(I\)

Using (2) in equation (1)

\(\begin{aligned}{l}I &= \frac{1}{2}\int {tdt - \frac{1}{2}\int {t\cos 2tdt} } \\I &= \frac{{{t^2}}}{4} - \frac{{t\sin 2t}}{4} - \frac{{\cos 2t}}{8} + c\\I &= \frac{{2{t^2} - 2t\sin 2t - \cos 2t}}{8} + c\end{aligned}\)

Hence, the value of integral:

\(\int {t{{\sin }^2}tdt} = \frac{{2{t^2} - 2t\sin 2t - \cos 2t}}{8} + c\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.