Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 340
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral\(\int {x*{\mathop{\rm Sin}\nolimits} ({x^2})*{\mathop{\rm Cos}\nolimits} (3{x^2}).dx} \)

The Value of integral is \( - \frac{1}{2}{\mathop{\rm Cos}\nolimits} {x^2} + \frac{3}{2}{{\mathop{\rm Cos}\nolimits} ^2}{x^2} + c\)

See the step by step solution

Step by Step Solution

Step 1-

Apply the Formula of \({\mathop{\rm Cos}\nolimits} 3x\)

We know,\({\mathop{\rm Cos}\nolimits} 3x = 4{{\mathop{\rm Cos}\nolimits} ^3}x - 3{\mathop{\rm Cos}\nolimits} x\)

Therefore,\(\int {x*{\mathop{\rm Sin}\nolimits} {x^2}} *{\mathop{\rm Cos}\nolimits} 3{x^2}.dx = \int {x*{\mathop{\rm Sin}\nolimits} {x^2}(4{{{\mathop{\rm Cos}\nolimits} }^3}{x^2} - 3{\mathop{\rm Cos}\nolimits} {x^2}).dx} \)\(\)

=\(4\int {x*{\mathop{\rm Sin}\nolimits} {x^2}} *{\cos ^3}{x^2} - 3\int {x*{\mathop{\rm Sin}\nolimits} {x^2}*{\mathop{\rm Cos}\nolimits} {x^2}.dx} \)

Step 2 – Evaluate the integral by substituting \({\mathop{\rm Cos}\nolimits} {x^2} = t\)

Let \({\mathop{\rm Cos}\nolimits} {x^2} = t\)

Differentiating both sides with respect to x

=\( - 2x*{\mathop{\rm Sin}\nolimits} {x^2}.dx = dt\)

=\(x*{\mathop{\rm Sin}\nolimits} {x^2}.dx = ( - )\frac{{dt}}{2}\)

The integral becomes,

=\(4\int {{t^3}( - \frac{{dt}}{2}) - 3\int {t( - \frac{{dt}}{2})} } \)

=\( - 2\int {{t^3}dt + \frac{3}{2}\int {t.dt} } \)

=\( - 2*\frac{{{t^4}}}{4} + \frac{3}{2}*\frac{{{t^2}}}{2} + c\)

=\(\)\( - \frac{{{t^4}}}{2} + \frac{3}{4}*\frac{{{t^2}}}{{}} + c\)

Step 3 –(Put \(t = {\mathop{\rm Cos}\nolimits} {x^2}\)in the value of integral)=\( - \frac{1}{2}{{\mathop{\rm Cos}\nolimits} ^4}{x^2} + \frac{3}{2}{{\mathop{\rm Cos}\nolimits} ^2}{x^2} + c\)

Hence, \(\int {x*{\mathop{\rm Sin}\nolimits} {x^2}} *{\mathop{\rm Cos}\nolimits} 3{x^2}.dx\)= \( - \frac{1}{2}{{\mathop{\rm Cos}\nolimits} ^4}{x^2} + \frac{3}{2}{{\mathop{\rm Cos}\nolimits} ^2}{x^2} + c\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.