Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q19E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 334
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral: \(\int {\frac{{{x^2} + 1}}{{\leftEvaluate the integral: \(\int {\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)

The solution of the given integral is given as:

\(10\ln (1x - 31) - g\ln ( - x - 21) + \frac{5}{{x - 2}} + c\)

See the step by step solution

Step by Step Solution

Step 1: Write as Partial Fraction and find A, B, C

\(\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}} = \frac{A}{{x - 3}} + \frac{B}{{x - 2}} + \frac{C}{{{{\left( {x - 2} \right)}^2}}}\)

\(\therefore {x^2} + 1 = \left( {\left( {x - 3} \right){{\left( {x - 2} \right)}^2}} \right)\left( {\frac{A}{{x - 3}} + \frac{B}{{x - 2}} + \frac{C}{{{{\left( {x - 3} \right)}^2}}}} \right)\)

\(\therefore {x^2} + 1 = A{(x - 2)^2} + B(x - 2)(x - 3) + C(x - 3)\)

\(\begin{array}{l}\therefore {x^2} + 1 = A({x^2} - 4x + 4) + B({x^2} - 5x + 6) + C(x - 3)\\\therefore {x^2} + 1 = A{x^2} - 4Ax + 4A + B{x^2} - 5Bx + 6B + Cx - 3C\\\therefore {x^2} + 1 = (A{x^2} + B{x^2}) + ( - 4Ax - 5Bx + Cx) + 4A + 6B - 3C\\\therefore {x^2} + 1 = (A + B){x^2} + ( - 4A - 5B + C)x + 4A + 6B - 3C\end{array}\)

By comparing the coefficients of \({x^2}\)and \(x\)

\(\begin{array}{l}\therefore A + B = 1 \to (1)\\4A + 6B - 3C = 1 \to (2)\\ - 4A - 5B + C = 0 \to (3)\end{array}\)

Solve the system of equations,

\(\therefore A + B = 1 \Rightarrow A = 1 - B\)

Put the value of A in equation (3)

\(\begin{array}{l}\therefore - 4(1 - B) - 5B + C = 0 \Rightarrow - 4 + 4B - 5B + C = 0\\\therefore - 4 - B + C = 0 \Rightarrow C - B = 4 \to (4)\end{array}\)

Now, put \(C = 4 + B\) in equation (2)

\(\begin{array}{l}\therefore 4A + 6B - 3(4 + B) = 1 \Rightarrow 4A + 6B - 12 - 3B = 1\\\therefore 4A + 3B = 13 \to (5)\end{array}\)

Put \(A = 1 - B\) in equation (5),

We get \(4(1 - b) + 3b = 13\)

Substitute value of B in equations (4) and (1)

Step 2: Simplify and find the integral

\(\therefore \frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}} = \frac{{10}}{{x - 3}} + \frac{{ - 9}}{{x - 2}} + \frac{{ - 5}}{{{{(x - 2)}^2}}}\)

Apply integral both sides

\(\int {\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} = \int {\frac{{10}}{{x - 3}}} - 9\int {\frac{1}{{x - 2}}dx} - 5\int {\frac{1}{{{{\left( {x - 2} \right)}^2}}}dx} \)

\(\therefore \int {\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx = 10\ln (1x - 31) - 9\ln (1x - 2) - 5\left( { - \frac{1}{{x - 2}}} \right) + c\)

\(\therefore \int {\frac{{{x^2} + 1}}{{(x - 3){{(x - 2)}^2}}}} dx = 10\ln (1x - 31) - 9\ln (1x - 2) + \frac{5}{{x - 2}} + c\)

Hence, the solution of the integral can be given as \(\int {\frac{{{x^2} + 1}}{{(x - 3){{(x - 2)}^2}}}} dx = 10\ln (1x - 31) - 9\ln (1x - 21) + \frac{5}{{x - 2}} + c\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.