Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q22E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 326
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)

Evaluating the integral \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)

We use identity \({\sec ^2}\theta = 1 + {\tan ^2}\theta \)

If the power of \(\sec x\) is even, save a factor of \({\sec ^2}x\) and use \({\sec ^2}x = 1 + {\tan ^2}x\) to express the remaining factors in terms of \(\tan x\) . Then substitute \(\tan x = u\).

See the step by step solution

Step by Step Solution

Step 1: Evaluation

Evaluating the integral\(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)

\(\begin{aligned}{l} \Rightarrow I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}\theta {{\sec }^2}\theta {{\sec }^2}\theta d\theta } \\ \Rightarrow I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}\theta (1 + {{\tan }^2}\theta ){{\sec }^2}\theta d\theta \to 1} \end{aligned}\)

Let \(u = \tan \theta \)

Differentiating with respect to\(\theta \)

\(\begin{aligned}{l}\frac{{du}}{{d\theta }} &= {\sec ^2}\theta \\ \Rightarrow du &= {\sec ^2}\theta d\theta \end{aligned}\)

Step 2: Integration Using Steps

Changing limits from \(\theta \)to \(u\)

If \(\theta = 0 \Rightarrow u = \tan o \to u = o\)

If \(\theta = \frac{\pi }{4} \Rightarrow u = \tan \frac{\pi }{4} \to u = 1\)

Upper Limit = 1 and Lower Limit = \(0\)

Step 3: Calculation

Substituting \(\tan \theta = u\) and \({\sec ^2}\theta d\theta = du\) in equation 1

And changing limits from \(0\)to \(\frac{\pi }{4}\)à\(0\)to \(1\)

Then equation 1 becomes

\(\begin{aligned}{l} \Rightarrow I &= \int\limits_0^1 {{u^4}(1 + {u^2})du} \\ \Rightarrow I &= \int\limits_{}^1 {} \end{aligned}\) \(\begin{aligned}{l}I &= \int\limits_0^1 {{u^4}\left( {1 + {u^2}} \right)} du\\ \Rightarrow I &= \int\limits_0^1 {{u^4}du + \int\limits_0^1 {{u^6}du} } \end{aligned}\)

We know that \(\int {{x^n}} dx = \frac{{{x^{n + 1}}}}{{n + 1}}\)

\(\begin{aligned}{l}I &= \left[ {\frac{{{u^{4 + 1}}}}{{4 + 1}}} \right]_0^1 + \left[ {\frac{{{u^{6 + 1}}}}{{6 + 1}}} \right]_0^1\\ &= \left[ {\frac{{{u^5}}}{5}} \right]_0^1 + \left[ {\frac{{{u^7}}}{7}} \right]_0^1\\ &= \frac{1}{5}\left( {1 - 0} \right) + \frac{1}{7}\left( {1 - 0} \right)\\ \Rightarrow I &= \frac{1}{5} + \frac{1}{7}\\ \Rightarrow I &= \frac{{7 + 5}}{{35}}\\ \Rightarrow I &= \frac{{12}}{{35}}\end{aligned}\)

Step 4: Finalizing the equation

Replacing 1 by \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)

\(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)\( = \frac{{12}}{{35}}\)

Hence, the value of Integral is

\(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)\( = \frac{{12}}{{35}}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.