Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q24E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 326
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluating the integral \(\int {{{\tan }^5}} x{\sec ^3}xdx\)

Evaluating the integral \(\int {{{\tan }^5}} x{\sec ^3}xdxjaae\) we use the identity \({\tan ^2}x = {\sec ^2}x - 1\)

If the power of \(\tan x\) is odd, save a factor of \(\sec x\tan x\) and use \({\tan ^2}x = {\sec ^2}x - 1\)to express the remaining factors in term of \(\sec x\). Then substitute \(u = \sec x\)

See the step by step solution

Step by Step Solution

Step 1: Evaluation

Evaluating the Integral

\({\tan ^2}x = {\sec ^2}x - 1\)= \(\int {{{\tan }^4}x{{\sec }^2}} x.\sec x\tan xdx\)

= \(\int {{{\left( {{{\tan }^2}x} \right)}^2}} {\sec ^2}x.\sec xtanxdx\)

Use Trigonometric Identity \({\tan ^2}x = {\sec ^2}x - 1\)

\(\therefore \int {{{\tan }^5}} x{\sec ^2}xdx = {\int {\left( {{{\sec }^2}x - 1} \right)} ^2}{\sec ^2}x.\sec x\tan xdx \to 1\)

Let \(u = \sec x\)

Differentiating with respect to \(x\)

\(\begin{aligned}{l}\frac{{du}}{{dx}} &= \sec x\tan x\\ \Rightarrow du &= \sec x\tan xdx\end{aligned}\)

Substituting \(\sec x = u\) and \(\sec x\tan xdx = du\) in equation 1

Then equation 1 becomes

Therefore, \(\int {{{\tan }^5}} x{\sec ^3}xdx = {\int {\left( {{u^2} - 1} \right)} ^2}{u^2}.du \to 2\)

Use Identity \({\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\)

So, \({\left( {{u^2} - 1} \right)^2} = {u^4} + 1 - 2{u^2}\)

Substitute the above value in equation 2

\(\begin{aligned}{l}\int {{{\tan }^5}} x{\sec ^3}xdx &= \int {\left( {{u^4} + 1 - 2{u^2}} \right)} {u^2}du\\ &= \int {\left( {{u^6} + {u^2} - 2{u^4}} \right)} du\\\therefore \int {{{\tan }^5}} x{\sec ^3}xdx &= \int {{u^6}} du + \int {{u^2}du - 2\int {{u^4}du} } \\ \Rightarrow \int {{{\tan }^5}} x{\sec ^3}xdx &= \frac{{{u^{6 + 1}}}}{{6 + 1}} + \frac{{{u^{2 + 1}}}}{{2 + 1}} - 2.\frac{{{u^{4 + 1}}}}{{4 + 1}} + c\\ \Rightarrow \int {{{\tan }^5}} x{\sec ^3}xdx &= \frac{{{u^7}}}{7} + \frac{{{u^3}}}{3} - 2.\frac{{{u^5}}}{5} + c \to 3\end{aligned}\)

Step 2: Substitution

Substituting the value \(u = \sec x\)in equation 3

Thus, \(\begin{aligned}{l}\int {{{\tan }^5}} x{\sec ^3}xdx &= \frac{{{{\left( {\sec x} \right)}^7}}}{7} + \frac{{{{\left( {\sec x} \right)}^3}}}{3} - \frac{{2{{\left( {\sec x} \right)}^5}}}{5} + c\\ \Rightarrow \int {{{\tan }^5}} x{\sec ^3}xdx = \frac{{{{\sec }^7}x}}{7} + \frac{{{{\sec }^3}x}}{3} - \frac{{2{{\sec }^5}x}}{5} + c\end{aligned}\)

Hence the value of \(\int {{{\tan }^5}} x{\sec ^3}xdx\)

\(\frac{{{{\sec }^7}x}}{7} + \frac{{{{\sec }^3}x}}{3} - \frac{{2{{\sec }^5}x}}{5} + c\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.