• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q26E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 326
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)

Evaluating the Integral \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \), we use Trigonometric Identity, \({\tan ^2}x = {\sec ^2}x - 1\) then substitution method to integrate it.

See the step by step solution

Step by Step Solution

Step 1: Evaluation

Evaluating the integration \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)

Let \(I = \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)

\(I = \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}t \times {{\tan }^2}} tdt\)

We use \({\tan ^2}t = {\sec ^2}t - 1\)

\(\begin{aligned}{l} \Rightarrow I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}t\left( {{{\sec }^2}t - 1} \right)} dt\\\therefore I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t.{\sec ^2}tdt - \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}tdt} \\ \Rightarrow I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t.{\sec ^2}tdt - \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {\left( {{{\sec }^2}t - 1} \right)} dt\\ \Rightarrow I &= \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t.{\sec ^2}tdt - \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^2}tdt + \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {dt \to 1} } \end{aligned}\) \(\)

Step 2: Using Limits

Finding Integral \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t{\sec ^2}tdt\)

Let \(u = \tan t\)

\(\begin{aligned}{l}\frac{{du}}{{dt}} &= {\sec ^2}t\\ \Rightarrow du = {\sec ^2}tdt\end{aligned}\)

If \(t = 0 \Rightarrow u = \tan 0 \to 0\)

If \(t = \frac{\pi }{4} \Rightarrow u = \tan \frac{\pi }{4} \to 1\)

Therefore Lower Limit = 0 and Upper Limit = 1

\(\begin{aligned}{l}\therefore \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t{\sec ^2}tdt &= \int\limits_0^1 {{u^2}.du} \\ &= \left( {\frac{{{u^{2 + 1}}}}{{2 + 1}}} \right)_0^1\\ &= \left( {\frac{{{u^3}}}{3}} \right)_0^1\\ &= \frac{1}{3}\left( {1 - 0} \right)\\\therefore \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^2}} t{\sec ^2}tdt &= \frac{1}{3} \to 2\end{aligned}\)

Step 3:Calculation

Finding the Integral of \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^2}tdt} \)

\(\begin{aligned}{l}\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^2}} tdt &= \left( {\tan t} \right)_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}}\\ &= \tan \frac{\pi }{4} - \tan 0\\ &= 1 - 0\\ &= 1\\\therefore \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\sec }^2}tdt &= 1 \to 3} \end{aligned}\)

Finding the value of \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {dt} \)

\(\begin{aligned}{l}\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {dt &= \left( t \right)_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}}} \\ &= \frac{\pi }{4} - 0\\\therefore \int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {dt &= \frac{\pi }{4}} \to 4\end{aligned}\)

Step 4: Substitution

Substituting the values of equations 2, 3 and 4

\(\begin{aligned}{l}\therefore I &= \frac{1}{3} - 1 + \frac{\pi }{4}\\ \Rightarrow I &= \frac{{4 - 12 + 3\pi }}{{12}}\\ \Rightarrow I &= \frac{{ - 8 + 3\pi }}{{12}} \Rightarrow I &= \frac{{3\pi - 8}}{{12}}\end{aligned}\)

Step 5: Replacing the equation

Replacing 1 by \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \)

Thus, \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} = \frac{{3\pi - 8}}{{12}}\)

Hence the value of \(\int\limits_0^{{\pi \mathord{\left/

{\vphantom {\pi 4}} \right.

\kern-\nulldelimiterspace} 4}} {{{\tan }^4}tdt} \) is \(\frac{{3\pi - 8}}{{12}}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.