Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q30E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 326
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the Equation\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} \)

The answer is \(\frac{1}{2} - \frac{{ln\left( 2 \right)}}{2}\)

First, convert \(co{t^3}x\) in \(cosec\,x\) using trigonometric identities and then substituting \(cosec\,x\) with \(u\), solve the definite integral.

See the step by step solution

Step by Step Solution

Step 1: Converting \(co{t^3}x\) in \(cosec\,x\) using the trigonometric identity.

\(\begin{aligned}{l}\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} \\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {cot\,x\left( {co{t^2}x} \right)\,dx} \\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {cot\,x\left( {cose{c^2}x - 1} \right)\,dx} \end{aligned}\)

Step 2: Putting \(cosec\,x = u\)

Let \(cosec\,x = u\)

\(\begin{aligned}{l} \Rightarrow - cot x cosec x dx &= du\\ \Rightarrow cot x dx &= - \frac{{du}}{{cosec\,x}}\\ \Rightarrow cotx\,dx &= - \frac{{du}}{u}\\ \Rightarrow - \frac{{du}}{u} &= cot\,x\,dx\,\,.....(1)\end{aligned}\)

So,

\(\begin{aligned}{l} &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {cot\,x\left( {cose{c^2}x - 1} \right)\,dx} \\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {cose{c^2}x - 1} \right)cot\,x\,dx} \\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {{u^2} - 1} \right)\left( { - \frac{{du}}{u}} \right)\,\,\,\,\left( {From\,\,(i)} \right)} \\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{ - \left( {{u^2} - 1} \right)}}{u}} \,du\\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( { - u + \frac{1}{u}} \right)} \,du\\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{u} - u} \right)} \,du\end{aligned}\)

Step 3: Applying linearity and solving the integral.

\(\begin{aligned}{l} &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{u} - u} \right)} \,du\\ &= \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{u}} \right)} \,du - \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {u\,} du\\ &= \left( {ln\left| u \right|} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}} - \left( {\frac{{{u^2}}}{2}} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}}\end{aligned}\)

Step 4: Putting back \(u = cosec\,x\) and putting the limit.

\( = \left( {ln\left| u \right|} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}} - \left( {\frac{{{u^2}}}{2}} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}}\)

\( = \left( {ln\left| {cosec\,x} \right|} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}} - \left( {\frac{{cose{c^2}x}}{2}} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}}\)

\( = \left( {ln\left| {cosec\,\left( {\frac{\pi }{2}} \right)} \right| - ln\left| {cosec\,\left( {\frac{\pi }{4}} \right)} \right|} \right) - \left( {\frac{{cose{c^2}\left( {\frac{\pi }{2}} \right)}}{2} - \frac{{cose{c^2}\left( {\frac{\pi }{4}} \right)}}{2}} \right)\)

\( = \left( {ln\left| 1 \right| - ln\left| {\sqrt 2 } \right|} \right) - \left( {\frac{{{1^2}}}{2} - \frac{{{{\left( {\sqrt 2 } \right)}^2}}}{2}} \right)\)

\( = 0 - ln\left| {\sqrt 2 } \right| - \left( {\frac{1}{2} - \frac{2}{2}} \right)\)

\( = - ln\left| {\sqrt 2 } \right| - \left( { - \frac{1}{2}} \right)\)

\( = - ln{\left( 2 \right)^{\frac{1}{2}}} + \frac{1}{2}\)

\( = \frac{1}{2} - ln{\left( 2 \right)^{\frac{1}{2}}}\)

\( = \frac{1}{2} - \frac{{ln\left( 2 \right)}}{2}\)

Hence, \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} = \frac{1}{2} - \frac{{ln\left( 2 \right)}}{2}\)\(\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.