Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 334
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.

(a)

\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)

(b)

\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)

\[\frac{{{x^2}}}{{{x^2} - 2x + 1}} + \frac{{2x}}{{{x^2} - 2x + 1}} - \frac{1}{{{x^2} - 2x + 1}} + \frac{{{x^4}}}{{{x^2} - 2x + 1}} - \frac{{2{u^3}}}{{{x^2} - 2x + 4}}\]

This is the final answer.

See the step by step solution

Step by Step Solution

Step 1: Decomposition of the partial fraction.

\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)\(\)

\({x^2} - 2x + 1 = {\left( {x - 1} \right)^2}\)

Step 2: Calculation of partial fraction.

\({x^4} - 2{x^3} + {x^2} + 2x - 1 = {x^2}\left( {{x^2} - 2x + 1} \right) + (2x - 1)\)

Written as

\({x^2} + \frac{{2x - 1}}{{{{(x - 1)}^2}}} = \frac{{x(x(x - 2)(x + 1) + 2) - 1}}{{(x - 2)x + 1}}\)

Expansion

\[\frac{{{x^2}}}{{{x^2} - 2x + 1}} + \frac{{2x}}{{{x^2} - 2x + 1}} - \frac{1}{{{x^2} - 2x + 1}} + \frac{{{x^4}}}{{{x^2} - 2x + 1}} - \frac{{2{u^3}}}{{{x^2} - 2x + 4}}\]

Hence, This is the final answer.

(b) Step 1:

\({x^3} + {x^2} + x = x\left( {{x^2} + x + 1} \right)\)

(b) Step 2:  Calculation of Partial fraction.

\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}} = \frac{A}{x} + \frac{{Bx + C}}{{{x^2} + x + 1}}\)

Hence \(\frac{A}{x} + \frac{{Bx + c}}{{{x^2}(x + 1)}}\) is final answer.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.