Americas
Europe
Q7E
Expert-verifiedEvaluate the integral\(\int {\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}} {\rm{dt}}\)
Evaluation’s successor is \(\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}{\rm{dt = - cos(lnt) + C}}\)
\(\begin{aligned}{l}\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}{\rm{dt}}\\{\rm{ = }}\;\;\;{\rm{sin(lnt)}}\frac{{\rm{1}}}{{\rm{t}}}{\rm{dt}}\end{aligned}\)
On differentiating, we'll use a substitute.
\(\begin{aligned}{l}{\rm{ = sin(u)du}}\\{\rm{ = - cos(u) + C}}\end{aligned}\)
\({\rm{ = - cos(lnt) + C}}\)
Finally, the original integral position is\(\frac{{{\rm{sin(lnt)}}}}{{\rm{t}}}{\rm{dt = - cos(lnt) + C}}\).
94% of StudySmarter users get better grades.
Sign up for free