• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

Suggested languages for you:

Americas

Europe

Q13E

Expert-verified
Found in: Page 760

### Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

## $$F(x,y) = \left\langle {y,y + 2} \right\rangle$$

The vector field $$F$$ matches with the plot I.

See the step by step solution

## Step 1: Given Information.

The given vector field is$$F\left( {x,y} \right) = \left\langle {y,y + 2} \right\rangle$$.

## Step 2: Explanation.

Vector fields generally have components in the $$i,{\rm{ }}j,{\rm{ and }}k$$axis in order to present the direction and magnitude of a group of vectors (vector fields).

These components can be either constants or a function of variables$$x,{\rm{ }}y,{\rm{ or }}z$$.

\begin{aligned}{l}F\left( {x,y} \right) &= \left\langle {y,y + 2} \right\rangle \\ \Rightarrow F\left( {x,y} \right) &= yi + \left( {y + 2} \right)j\end{aligned}

The vector field has components as functions of variable either$$x{\rm{ or }}y$$. That means, the slope and the magnitude of each of the vector will be depending on the coordinates$$\left( {x,y} \right)$$.

## Step 3: Find slope and magnitude.

### To find the slope and the magnitude:

Let,

\begin{aligned}{l}F(x,y) &= Pi + Qj\\ \Rightarrow F(x,y) &= yi + \left( {y + 2} \right)j\end{aligned}

Then,

\begin{aligned}{l}P &= y\\Q &= y + 2\end{aligned}

The slope will be,

$$\frac{Q}{P} = \frac{{y + 2}}{y} = 1 + \frac{2}{y}$$

The magnitude will be,

\begin{aligned}{l}\sqrt {{P^2} + {Q^2}} \\ &= \sqrt {{y^2} + {{\left( {y + 2} \right)}^2}} \\ &= \sqrt {{y^2} + {y^2} + 4 + 4y} \\ &= \sqrt {2{y^2} + 4y + 4} \end{aligned}

## Step 4: Analyse slope and magnitude.

As $$y$$ increases from $$0$$, the slope is positive and converges to$$1$$ because.

\begin{aligned}{l}\mathop {\lim }\limits_{y \to \infty } \frac{{y + 2}}{y} &= \mathop {\lim }\limits_{y \to \infty } \frac{{\frac{y}{y} + \frac{2}{y}}}{{\frac{y}{y}}}\\ &= \mathop {\lim }\limits_{y \to \infty } \frac{{1 + \frac{2}{y}}}{1}\\ &= 1\end{aligned}

As $$y$$ increases from$$0$$, the magnitude increases to infinity.

Therefore, the vector field $$F$$ matches with the plot I.