Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration


Essential Calculus: Early Transcendentals
Found in: Page 760
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.


Short Answer

Find the gradient vector field of \({\rm{f}}\).

\(f(x,y) = x{e^{xy}}\)

The gradient vector field of \(f\) is \(\overline V f\left( {x,y} \right) = {e^{xy}}\left( {1 + xy} \right)i + \left( {{x^2}{e^{xy}}} \right)j\).

See the step by step solution

Step by Step Solution

Step 1: Given Information.

It is given that \(f(x,y){\rm{ }} = {\rm{ }}x{e^{xy}}\).

Step 2: Find the gradient vector field.

\(f(x,y){\rm{ }} = {\rm{ }}x{e^{xy}}\)

\(\overline V f\left( {x,y} \right) = {f_x}\left( {x,y} \right)i + {f_y}\left( {x,y} \right)j\)

Applying the formula to the given function and using summation derivation rule, we get

\(\begin{aligned}\overline V f\left( {x,y} \right) &= {f_x}\left( {x,y} \right)i + {f_y}\left( {x,y} \right)j \\ &= \frac{\partial }{{\partial x}}\left( {x{e^{xy}}} \right)i + \frac{\partial }{{\partial y}}\left( {x{e^{xy}}} \right)j \\ &= \frac{\partial }{{\partial x}}\left( {\mathop{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{x} }\limits_u \mathop {{{\mathop{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{e} }\limits_v}^{xy}}}\limits_{} } \right)i + x\frac{\partial }{{\partial y}}\left( {{e^{xy}}} \right)j\\&= \left( {1 \cdot {e^{xy}} + x \cdot y{e^{xy}}} \right)i + x\frac{\partial }{{\partial y}}\left( {{e^{xy}}} \right)j \\&= {e^{xy}}\left( {1 + xy} \right)i + \left( {{x^2}{e^{xy}}}\right)j \\\end{aligned} \)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.