Americas
Europe
Q30E
Expert-verifiedThe location of particle is\(\left\langle {1.05,2.95} \right\rangle \).
It is given that,
Velocity field is \(V(x,y) = \left\langle {xy - 2,{y^2} - 10} \right\rangle \)
Position of particle at time \(t = 1\) is \(\left( {1,3} \right)\)
We have to find the location of particle at time \(t = 1.05\)
Therefore, the velocity is \(V(x,y) = \left\langle {\frac{d}{{dt}}x\left( t \right),\frac{d}{{dt}}y\left( t \right)} \right\rangle = \left\langle {xy - 2,{y^2} - 10} \right\rangle \) and \(\left\langle {x\left( t \right),y\left( t \right)} \right\rangle \) is the position vector of the particle.
So, at time \(t = 1\), the position of particle is \(\left\langle {x\left( 1 \right),y\left( 1 \right)} \right\rangle = \left\langle {1,3} \right\rangle \).
\(\begin{aligned}{l}V(x,y) & = \left\langle {xy - 2,{y^2} - 10} \right\rangle \\V(1,3) & = \left\langle {(1 \times 3) - 2,{3^2} - 10} \right\rangle \\V(1,3) & = \left\langle {1, - 1} \right\rangle \end{aligned}\)
Now, at time \(t = 1.05\)
The rate of change in time is
\(\left( {\Delta t} \right) = 1.05 - 1 = 0.05\)
And the displacement of particle is
\(\begin{aligned}{l}\Delta r & = \left( {V\left( {1,3} \right)} \right) \cdot \Delta t\\ & = \left( {1, - 1} \right) \cdot \left( {0.05} \right)\\ & = \left( {0.05, - 0.05} \right)\end{aligned}\)
Let the position of particle, at time \(t = 1.05\), be \(\left\langle {{x_1}\left( {1.05} \right),{y_1}\left( {1.05} \right)} \right\rangle \).
Then,
\(\begin{aligned}{l}\left\langle {{x_1}\left( {1.05} \right),{y_1}\left( {1.05} \right)} \right\rangle & = \left\langle {x\left( 1 \right),y\left( 1 \right)} \right\rangle + \Delta r\\ &= \left\langle {1,3} \right\rangle + \left\langle {0.05, - 0.05} \right\rangle \\ & = \left\langle {1.05,2.95} \right\rangle \end{aligned}\)
Therefore, the location of particle is\(\left\langle {1.05,2.95} \right\rangle \).
94% of StudySmarter users get better grades.
Sign up for free