• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q3E

Expert-verified Found in: Page 816 ### Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280 # Find the value of $$\iint_{H}{f}(x,y,z)dS$$..

The value of $$\iint_{H}{f}(x,y,z)dS$$ is 2827.

See the step by step solution

## Step 1: Concept of surface integral

The surface integral is a generalization of multiple integrals that allows for surface integration. The surface integral is sometimes referred to as the double integral. We can integrate across a surface in either the scalar or vector fields for any given surface. The function returns the scalar value in the scalar field and function returns the vector value in the vector field.

“The surface integral of f over the surface s as $$\iint_S f(x,y,z)dS = \mathop {\lim }\limits_{\max \Delta {u_i},\Delta {v_j} \to 0} \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n f } \left( {P_{ij}^*} \right)\Delta {S_{ij}}$$ where,$\Delta {S_{ij}} \approx \left| {{r_u} \times {r_v}} \right|\Delta {u_i}\Delta {v_j}$

## Step 2: Find the value of

As given data;

$$H$$ be the hemisphere $${x^2} + {y^2} + {z^2} = 50,z \ge 0$$.

$$f(3,4,5) = 7,f(3, - 4,5) = 8,f( - 3,4,5) = 9$$ and $$f( - 3, - 4,5) = 12$$.

The $$x,z$$$$- and$$$$y,z$$$$- planesareusedtodividehemisphere$$(H) into four patches of equal size, each has a surface area equal to $$\frac{1}{8}$$ the surface area of a sphere with radius $$\sqrt {50}$$Therefore;

$$\Delta S = \frac{1}{8}(4)\pi {(\sqrt {50} )^2} = \frac{1}{2}\pi (50) = 25\pi$$

The sample points in the four patches are$$( \pm 3, \pm 4,5)$$.

\iint_H f(x,y,z)dS \cong \left\{ {\begin{aligned}{*{20}{l}}{[f(3,4,5)](25\pi ) + [f(3, - 4,5)](25\pi ) + } \\ {[f( - 3,4,5)](25\pi ) + [f( - 3, - 4,5)](25\pi )} \end{aligned}} \right\}

Substitute 7 for $$f(3,4,5),8$$ for $$f(3, - 4,5),9$$ for $$f( - 3,4,5)$$ and 12 for$$f( - 3, - 4,5)$$;

\begin{align}& \iint_{H}{f}(x,y,z)dS\cong [(7)(25\pi )+(8)(25\pi )+(9)(25\pi )+(12)(25\pi )] \\&\iint_{H}{f}(x,y,z)dS\cong (25\pi )(7+8+9+12) \\ & \iint_{H}{f}(x,y,z)dS\cong (25\pi )(36) \\&\iint_{H}{f}(x,y,z)dS\cong 2827\\\end{align}

Thus, the value of $$\iint_H f(x,y,z)dS$$ is 2827. ### Want to see more solutions like these? 