• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q53E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 806
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

  1. Show the parametric equation\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) represents an ellipsoid.
  2. Draw the graph of an ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)
  3. Find the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\)

  1. The parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) are represented an ellipsoid.
  2. The answer is given below
  3. The expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2{\rm{, and }}c = 3\)is\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\).
See the step by step solution

Step by Step Solution

Step 1: Expression for equation of ellipsoid

(a)

Write the expression for equation of ellipsoid:

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) …… (1)

Step 2: Use the equation of ellipsoid for further calculation

Write the parametric equation as follows,

\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \)

Rewrite the parametric equation as follows,

\(\frac{x}{a} = \sin u\cos v,\frac{y}{b} = \sin u\sin v,\frac{z}{c} = \cos u\)

Take square and add the expression as follows,

\({\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} + {\left( {\frac{z}{c}} \right)^2} = {(\sin u\cos v)^2} + {(\sin u\sin v)^2} + {(\cos u)^2}\)

Simplify the expression as follows,

\(\begin{align} & frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}+\frac{{{z}^{2}}}{{{c}^{2}}}={{\sin }^{2}}u{{\cos }^{2}}v+{{\sin }^{2}}u{{\sin }^{2}}v+{{\cos }^{2}}u \\ & ={{\sin }^{2}}u\left( {{\cos }^{2}}v+{{\sin }^{2}}v \right)+{{\cos }^{2}}u \\ & ={{\sin }^{2}}u(1)+{{\cos }^{2}}u\left( \because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right) \\ & ={{\sin }^{2}}u+{{\cos }^{2}}u \\ \end{align}\)

Then,

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) …… (2)

As the equations (1) and (2) are similar, the parametric equation represents an ellipsoid.

Thus, the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \) are represented an ellipsoid.

Step 3: Consider the values of scalar parameters in the parametric equations

(b)

Consider the values of scalar parameters in the parametric equations as follows,

\(a = 1,b = 2,{\rm{ and }}c = 3\)

Substitute \(1{\rm{ for }}a,2{\rm{ for }}b,{\rm{ and }}3{\rm{ for }}c\) in the parametric equations and rewrite the parametric equations of the ellipsoid as follows.

\(\begin{array}{l}x = (1)\sin u\cos v,y = (2)\sin u\sin v,z = (3)\cos u,0 \le u \le \pi ,0 \le v\\ \le 2\pi \\x = \sin u\cos v,y = 2\sin u\sin v,z = 3\cos u,0 \le u \le \pi ,0 \le v \le 2\pi \end{array}\) …… (3)

From the analysis in part (a) and equation (3), draw the graph of an ellipsoid with the parametric equations \(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\) as shown in Figure 1.

Thus, the graph of an ellipsoid of the parametric equations \(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2,{\rm{ and }}c = 3\) is drawn.

Step 4: Expression to find the surface area of the plane

(c)

Write the expression to find the surface area of the plane with vector equation\({\rm{r}}(u,v)\)

\(A(S)=\iint_{D}{\left| {{\text{r}}_{u}}\times {{\text{r}}_{v}} \right|}dA\) …… (4)

Here,

\({r_u}\) Is the derivative of vector equation \({\bf{r}}(u,v)\) with respect to the parameter \(u\) and

\({{\rm{r}}_v}\) Is the derivative vector equation \({\rm{r}}(u,v)\) with respect to the parameter \(v{\rm{. }}\)

Write the expression to find \({r_u}.\)

\({{\rm{I}}_u} = \frac{\partial }{{\partial u}}(\;{\rm{T}}(u,v))\) …… (5)

Write the expression to find \({{\rm{r}}_v}.\)

\({\Gamma _v} = \frac{d}{{{\partial _v}}}(\Gamma (u,v))\) ...... (6)

Step 5: Use the equations (4), (5), and (6) for further calculation

Write the vector function \({\rm{r}}(u,v)\) for the parametric equations in equation (3),

\({\rm{r}}(u,v) = \langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle ,0 \le u \le \pi ,0 \le v \le 2\pi \)

Calculation of\(ru\):

Substitute \(\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle {\rm{ for r}}(u,v)\) in equation (5),

\(\begin{array}{l}{{\rm{r}}_u} = \frac{\partial }{{\partial u}}\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle \\ = \left\langle {\frac{\partial }{{\partial u}}(\sin u\cos v),\frac{\partial }{{\partial u}}(2\sin u\sin v),\frac{\partial }{{\partial u}}(3\cos u)} \right\rangle \\ = \left\langle {\cos v\frac{\partial }{{\partial u}}(\sin u),2\sin v\frac{\partial }{{\partial u}}(\sin u),3\frac{\partial }{{\partial u}}(\cos u)} \right\rangle \\ = \langle \cos u\cos v,2\cos u\sin v, - 3\sin u\rangle \end{array}\)

Calculation of\(rv\):

Substitute \(\langle \sin u\cos v,2\sin u\sin v,3\cos u\rangle {\rm{ for r}}(u,v)\) in equation (6),

Calculation of\(ru \times rv\):

Substitute \(\langle \cos u\cos v,2\cos u\sin v, - 3\sin u\rangle {\rm{ for }}{{\rm{r}}_u}{\rm{ and }}\langle - \sin u\sin v,2\sin u\cos v,0\rangle {\rm{ for }}{{\rm{r}}_t}\) in the expression\(ru \times rv\),

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle {\begin{array}{*{20}{l}}{\cos u\cos v,}\\{2\cos u\sin v, - 3\sin u}\end{array}} \right\rangle \times \left\langle {\begin{array}{*{20}{l}}{ - \sin u\sin v}\\{2\sin u\cos v,0}\end{array}} \right\rangle \)

Rewrite and compute the expression as follows,

\(\begin{array}{l}{{\rm{r}}_u} \times {{\rm{r}}_v} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\cos u\cos v}&{2\cos u\sin v}&{ - 3\sin u}\\{ - \sin u\sin v}&{2\sin u\cos v}&0\end{array}} \right|\\ = \left( {\begin{array}{*{20}{c}}{\left| {\begin{array}{*{20}{c}}{2\cos u\sin v}&{ - 3\sin u}\\{2\sin u\cos v}&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}{\cos u\cos v}&{ - 3\sin u}\\{ - \sin u\sin v}&0\end{array}} \right|{\rm{j}}}\\{ + \left| {\begin{array}{*{20}{c}}{\cos u\cos v}&{2\cos u\sin v}\\{ - \sin u\sin v}&{2\sin u\cos v}\end{array}} \right|{\rm{k}}}\end{array}} \right)\\ = \left\{ {\begin{array}{*{20}{l}}{\left( {0 - \left( {6{{\sin }^2}u\cos v} \right)} \right){\rm{i}} - \left( {0 - 3{{\sin }^2}u\sin v} \right){\rm{j}}}\\{ + \left( {2\sin u\cos u\cos 2v - \left( { - 2\sin u\cos u{{\sin }^2}v} \right)} \right){\rm{k}}}\end{array}} \right\}\\ = - 6{\sin ^2}u\cos v{\rm{i}} + 3{\sin ^2}u\sin v{\rm{j}} + 2\sin u\cos u\left( {{{\cos }^2}v + {{\sin }^2}v} \right){\rm{k}}\end{array}\)

Simplify the expression as follows,

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle { - 6{{\sin }^2}u\cos v,3{{\sin }^2}u\sin v,2\sin u\cos u} \right\rangle \)

Substitute\(\left\langle { - 6{{\sin }^2}u\cos v,3{{\sin }^2}u\sin v,2\sin u\cos u} \right\rangle {\rm{ for }}{{\rm{r}}_u} \times {{\rm{r}}_v}\) in equation (4),

Apply the limits\(u,v\) and rewrite the expression as follows,

\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\)

Thus, the expression for surface area of the ellipsoid with the parametric equations\(x = a\sin u\cos v,y = b\sin u\sin v,z = c\cos u,0 \le u \le \pi ,0 \le v \le 2\pi {\rm{ for }}a = 1,b = 2{\rm{, and }}c = 3\)is\(A(S) = \int_0^{2\pi } {\int_0^\pi {\sqrt {36{{\sin }^4}u{{\cos }^2}v + 9{{\sin }^4}u{{\sin }^2}v + 4{{\sin }^2}u{{\cos }^2}u} } } dudv\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.