Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q54E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 807
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a). To show: The parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) represent a hyperboloid of one sheet.

(b). To draw: The graph of a hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

(c). To find: The expression for surface area of the hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\).

(a). The parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) are represents a hyperboloid of one sheet.

(c). The expression for surface area of the hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\) is

\(36{\cosh ^4}u{\cos ^2}v + 9{\cosh ^4}u{\sin ^2}v + 4{\sinh ^2}u{\cosh ^2}u\)

See the step by step solution

Step by Step Solution

Step 1: Formula used:

Write the expression for equation of hyperboloid of one sheet.

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1(1)\)

Here,

\(a,b\), and \(c\) are scalar parameters (constant real values).

Write the parametric equations as follows.

\(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\)

Step 2: Rewrite the parametric equations as follows.

Take square and add the expressions as follows.

\({\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} - {\left( {\frac{z}{c}} \right)^2} = {(\cosh u\cos v)^2} + {(\cosh u\sin v)^2} - {(\sinh u)^2}\)

Simplify the expression as follows.

\(\begin{aligned}&\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}\frac{{{z}^{2}}}{{{c}^{2}}}&={{\cosh }^{2}}u{{\cos }^{2}}v+{{\cosh }^{2}}u{{\sin }^{2}}v-{{\sinh }^{2}}u \\&={{\cosh }^{2}}u\left( {{\cos }^{2}}v+{{\sin }^{2}}v \right)-{{\sinh }^{2}}u\\&={{\cosh }^{2}}u(1)-{{\sinh }^{2}}u\left\{ \because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right\}\\&={{\cosh}^{2}}u{{\sinh}^{2}}u\\&\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}\frac{{{z}^{2}}}{{{c}^{2}}}=1\quad \left\{ {{\cosh }^{2}}\theta -{{\sinh }^{2}}\theta =1 \right\} \\ & \frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{{{z}^{2}}}{{{c}^{2}}}=1(2) \\\end{aligned} \)

As the equations (1) and (2) are similar, the parametric equations represent a hyperboloid of one sheet.

Thus, the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) are represents a hyperboloid of one sheet.

Step 3: Consider the values of scalar parameters in the parametric equations

as follows.

\(a = 1,b = 2,{\rm{ and }}c = 3\)

Substitute 1 for $a, 2$ for \(b\), and 3 for \(c\) in the parametric equations and rewrite the parametric equations of the hyperboloid of one sheet as follows.

\(x = (1)\cosh u\cos v,y = (2)\cosh u\sin v,z = \) (3) \(\sinh u\)

\(x = \cosh u\cos v,y = 2\cosh u\sin v,z = 3\sinh u(3)\)

From the analysis in Part (a) and equation (3), draw the graph of a hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\) as shown in figure 1

Thus, the graph of a hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\) is drawn.

Step 4: Calculation of \({r_u}\) :

Substitute \(\langle \cosh u\cos v,2\cosh u\sin v,3\sinh u\rangle \) for \({\rm{r}}(u,v)\) in equation (5),

\({{\rm{r}}_u} = \frac{\partial }{{\partial u}}\langle \cosh u\cos v,2\cosh u\sin v,3\sinh u\rangle \)

\( = \left\langle {\frac{\partial }{{\partial u}}(\cosh u\cos v),\frac{\partial }{{\partial u}}(2\cosh u\sin v),\frac{\partial }{{\partial u}}(3\sinh u)} \right\rangle \)

\( = \left\langle {\cos v\frac{\partial }{{\partial u}}(\cosh u),2\sin v\frac{\partial }{{\partial u}}(\cosh u),3\frac{\partial }{{\partial u}}(\sinh u)} \right\rangle \)

\( = \langle \sinh u\cos v,2\sinh u\sin v,3\cosh u\rangle \)

Calculation of \({{\rm{r}}_v}\) :

Substitute \(\langle \cosh u\cos v,2\cosh u\sin v,3\sinh u\rangle \) for \({\rm{r}}(u,v)\) in equation (6),

\({{\bf{r}}_v} = \frac{\partial }{{\partial v}}\langle \cosh u\cos v,2\cosh u\sin v,3\sinh u\rangle \)

\( = \left\langle {\frac{\partial }{{\partial v}}(\cosh u\cos v),\frac{\partial }{{\partial v}}(2\cosh u\sin v),\frac{\partial }{{\partial v}}(3\sinh u)} \right\rangle \)

\( = \left\langle {\cosh u\frac{\partial }{{\partial v}}(\cos v),2\cosh u\frac{\partial }{{\partial v}}(\sin v),3\sinh u\frac{\partial }{{\partial v}}(1)} \right\rangle \)

\( = \langle - \cosh u\sin v,2\cosh u\cos v,0\rangle \)

Step 5: Calculation of \({{\rm{r}}_u} \times {{\rm{r}}_v}\) :

Substitute \(\langle \sinh u\cos v,2\sinh u\sin v,3\cosh u\rangle \) for \({{\rm{r}}_u}\) and \(\langle - \cosh u\sin v,2\cosh u\cos v,0\rangle \) for \({{\rm{r}}_v}\) in the expression \({{\rm{r}}_u} \times {{\rm{r}}_v}\),

$\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle {\begin{array}{*{20}{l}}{\sinh u\cos v,}\\{2\sinh u\sin v,3\cosh u}\end{array}} \right\rangle \times \left\langle {\begin{array}{*{20}{l}}{ - \cosh u\sin v,}\\{2\cosh u\cos v,0}\end{array}} \right\rangle \)$

Rewrite and compute the expression as follows.

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{\sinh u\cos v}&{2\sinh u\sin v}&{3\cosh u}\\{ - \cosh u\sin v}&{2\cosh u\cos v}&0\end{array}} \right|\)

\( = \left( {\begin{array}{*{20}{c}}{\left| {\begin{array}{*{20}{c}}{2\sinh u\sin v}&{3\cosh u}\\{2\cosh u\cos v}&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}{\sinh u\cos v}&{3\cosh u}\\{ - \cosh u\sin v}&0\end{array}} \right|{\rm{j}}}\\{ + \left| {\begin{array}{*{20}{c}}{\sinh u\cos v}&{2\sinh u\sin v}\\{ - \cosh u\sin v}&{2\cosh u\cos v}\end{array}} \right|{\rm{k}}}\end{array}} \right)\)

\( = \left\{ {\begin{array}{*{20}{l}}{\left( {0 - \left( {6{{\cosh }^2}u\cos v} \right)} \right){\rm{i}} - \left( {0 - \left( { - 3{{\cosh }^2}u\sin v} \right)} \right){\rm{j}}}\\{ + \left( {2\sinh u\cosh u{{\cos }^2}v - \left( { - 2\sinh u\cosh u{{\sin }^2}v} \right)} \right){\rm{k}}}\end{array}} \right\}\)

\( = - 6{\cosh ^2}u\cos v{\rm{i}} - 3{\cosh ^2}u\sin v{\rm{j}} + 2\sinh u\cosh u\left( {{{\cos }^2}v + {{\sin }^2}v} \right){\rm{k}}\)

Simplify the expression as follows.

\({{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle { - 6{{\cosh }^2}u\cos v, - 3{{\cosh }^2}u\sin v,2\sinh u\cosh u} \right\rangle \)

Substitute \(\left\langle { - 6{{\cosh }^2}u\cos v, - 3{{\cosh }^2}u\sin v,2\sinh u\cosh u} \right\rangle \) for \(_u \times {{\rm{r}}_v}\) in equation (4),

Consider the limits of \(v\) as follows.

\(0 \le v \le 2\pi \)

As the \(z\) lies between \(( - 3)\) to \(3\) , find the limits of \(u\) as follows.

\(\begin{array}{l}{u_{{\rm{lower }}}} = - {\sinh ^{ - 1}}( - 1) = - \ln (1 + \sqrt 2 )\\{u_{{\rm{upper }}}} = {\sinh ^{ - 1}}(1) = \ln (1 + \sqrt 2 )\end{array}\)

The limits of \(u\) are written as follows.

\( - \ln (1 + \sqrt 2 ) \le u \le \ln (1 + \sqrt 2 )\)

Apply the limits of $u, v\(,andrewritetheexpressioninequation(7)asfollows.\)\(A(S) = \int_0^{2\pi } {\int_{ - \ln (1 + \sqrt 2 )}^{\ln (1 + \sqrt 2 )} {\sqrt {36{{\cosh }^4}u{{\cos }^2}v + 9{{\cosh }^4}u{{\sin }^2}v + 4{{\sinh }^2}u{{\cosh }^2}u} } } dudv\)

Thus, the expression for surface area of the hyperboloid of one sheet with the parametric equations \(x = a\cosh u\cos v,y = b\cosh u\sin v,z = c\sinh u\) for \(a = 1,b = 2\), and \(c = 3\) is

\(A(S) = \int_0^{2\pi } {\int_{ - \ln (1 + \sqrt 2 )}^{\ln (1 + \sqrt 2 )} {\sqrt {36{{\cosh }^4}u{{\cos }^2}v + 9{{\cosh }^4}u{{\sin }^2}v + 4{{\sinh }^2}u{{\cosh }^2}u} } } dudv.\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.