Americas
Europe
Q5E
Expert-verifiedFind the value of \(\iint_{S}{f}(x,y,z)dS \).
The value of \(\iint_{S}{f}(x,y,z)dS \). is \(11\sqrt {14} \).
The surface integral is a generalization of multiple integrals that allows for surface integration. The surface integral is sometimes referred to as the double integral. We can integrate across a surface in either the scalar or vector fields for any given surface. The function returns the scalar value in the scalar field and function returns the vector value in the vector field.
“The surface integral of \(f\)over the surface \(S\) as where, \(\iint_S f(x,y,z)dS = \mathop {\lim }\limits_{\max \Delta {u_i},\Delta {v_j} \to 0} \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n f } \left( {P_{ij}^*} \right)\Delta {S_{ij}}\) where,\(\Delta {S_{ij}} \approx \left| {{r_u} \times {r_v}} \right|\Delta {u_i}\Delta {v_j}\)
As given data;
\(x = u + v,y = u - v,z = 1 + 2u + v,0 \le u \le 2\) and \(0 \le v \le 1.\)
Use the formula;
\(\iint_{S}{f}(x,y,z)dS=\iint_{D}{f}(r(u,v))\left| {{\text{r}}_{u}}\times {{\text{r}}_{v}} \right|dA\) ..…. (1)
\({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}{\rm{i}} + \frac{{\partial y}}{{\partial u}}{\rm{j}} + \frac{{\partial z}}{{\partial u}}{\rm{k}}\) ..…. (2)
\({{\rm{r}}_v} = \frac{{\partial x}}{{\partial v}}{\rm{i}} + \frac{{\partial y}}{{\partial v}}{\rm{j}} + \frac{{\partial z}}{{\partial v}}{\rm{k}}\) …… (3)
For find the value of \({r_u}\);
Substitute \(u + v\) for \(x,u - v\) for \(y\) and \(1 + 2u + v\) for \(z\) in equation (2), then it gives
\(\begin{array}{l}{{\rm{r}}_u} = \frac{\partial }{{\partial u}}(u + v){\rm{i}} + \frac{\partial }{{\partial u}}(u - v){\rm{j}} + \frac{\partial }{{\partial u}}(1 + 2u + v){\rm{k}}\\{{\rm{r}}_u} = (1 + 0){\rm{i}} + (1 - 0){\rm{j}} + (0 + 2 + 0){\rm{k}}\\{{\rm{r}}_u} = {\rm{i}} + {\rm{j}} + 2{\rm{k}}\end{array}\)
For find the value of \({{\rm{r}}_v}\);
Substitute \(u + v\) for \(x,u - v\) for \(y\) and \(1 + 2u + v\) for \(z\) in equation (3);
\(\begin{array}{l}{{\rm{r}}_v} = \frac{\partial }{{\partial v}}(u + v){\rm{i}} + \frac{\partial }{{\partial v}}(u - v){\rm{j}} + \frac{\partial }{{\partial v}}(1 + 2u + v){\rm{k}}\\{{\rm{r}}_v} = (0 + 1){\rm{i}} + (0 - 1){\rm{j}} + (0 + 0 + 1){\rm{k}}\\{{\rm{r}}_v} = {\rm{i}} - {\rm{j}} + {\rm{k}}\end{array}\)
For find the value of \({{\rm{r}}_u} \times {{\rm{r}}_v}\);
\(\begin{array}{l}{{\bf{r}}_u} \times {{\bf{r}}_v} = ({\rm{i}} + {\rm{j}} + 2{\rm{k}}) \times ({\rm{i}} - {\rm{j}} + {\rm{k}})\\{{\bf{r}}_u} \times {{\bf{r}}_v} = \left| {\begin{array}{*{20}{c}}i&j&k\\1&1&2\\1&{ - 1}&1\end{array}} \right|\\{{\bf{r}}_u} \times {{\bf{r}}_v} = (1 + 2){\rm{i}} - (1 - 2){\rm{j}} + ( - 1 - 1){\rm{k}}\\{{\bf{r}}_u} \times {{\bf{r}}_v} = 3{\rm{i}} + {\rm{j}} - 2{\rm{k}}\end{array}\)
\(\begin{aligned}{l}\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = |3{\rm{i}} + {\rm{j}} - 2{\rm{k}}|\\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{(3)}^2} + {{(1)}^2} + {{( - 2)}^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {9 + 1 + 4} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {14} \end{aligned}\)
Modify equation (1) as follows;
\(\Delta {S_{ij}} \approx \left| {{r_u} \times {r_v}} \right|\Delta {u_i}\Delta {v_j}\)
Apply limits and substitute \(u + v\) for \(x,u - v\) for \(y,1 + 2u+ v\) for \(z\) and \(\sqrt {14} \) for \(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right|\);
Simplify the equation;
\(\begin{aligned}\iint_S {(x + y + z)}dS &= \int_0^1 {\int_0^2 {(u + v + u - v + 1 + 2u + v)} } (\sqrt {14} )dudv\hfill \\\iint_S {(x + y + z)}dS &= (\sqrt {14} )\int_0^1 {\int_0^2 {(4u + v + 1)} } dudv \hfill \\\iint_S {(x + y + z)}dS &= (\sqrt {14} )\int_0^1 {\left[ {4\left( {\frac{{{u^2}}}{2}} \right) + uv + u} \right]_0^2} dv \hfill \\\iint_S {(x + y + z)}dS &= (\sqrt {14} )\int_0^1 {\left[ {2{u^2} + uv + u} \right]_0^2} dv \hfill \\\end{aligned}\)
Modify the equation;
\(\begin{aligned}\mathop \iint \nolimits_S (x + y + z)dS &= (\sqrt {14} )\smallint _0^1\left[ {2\left( {{2^2} - {0^2}} \right) + v(2 - 0) + (2 - 0)} \right]dv \hfill \\\mathop \iint \nolimits_S (x + y + z)dS &=(\sqrt {14} )\smallint _0^1[2(4) + 2v + 2]dv \hfill \\\mathop \iint \nolimits_S (x+y+z)dS &=(\sqrt {14} )\smallint _0^1[8 + 2v + 2]dv \hfill \\\mathop \iint \nolimits_S (x+y+z)dS &=(\sqrt {14} )\smallint _0^1[2v + 10]dv \hfill \\\end{aligned} \)
Thus, the value of \(\iint_{S}{(x+y+z)}dS \). is\(11\sqrt {14} \).
94% of StudySmarter users get better grades.
Sign up for free