Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 771
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the line integral, where C is the given curve. \(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy}}\), \({\rm{C}}\)consists of line segments from \({\rm{(0,0)}}\)to\({\rm{(2,1)}}\)and from \({\rm{(2,1)}}\)to\({\rm{(3,0)}}\).

The line integral \(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy = }}\frac{{\rm{5}}}{{\rm{2}}}\).

See the step by step solution

Step by Step Solution

Step 1: Explanation of solution.

Find the line integral

\(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy}}\),

Where \({\rm{C}}\) is the line segment from \({\rm{(0,0)}}\) to \({\rm{(2,1)}}\)and from \({\rm{(2,1)}}\) to \({\rm{(3,0)}}\). Note\({\rm{C = }}{{\rm{C}}_1}{\rm{ + }}{{\rm{C}}_2}\), where \({{\rm{C}}_1}\)is the line segment joining \((0,0)\) to \((2,1)\) and \({{\rm{C}}_2}\)is the line segment joining \({\rm{(2,1)}}\) to \({\rm{(3,0)}}\).

\(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy = }}\int_{{{\rm{C}}_{\rm{1}}}{\rm{ + }}{{\rm{C}}_{\rm{2}}}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy}}\).

Step 2: Graph and Calculation.

On \({C_1},y = \frac{x}{2}\) which implies \(dy = \frac{{dx}}{2}\), and \({{\rm{C}}_{{\rm{2,y}}}}{\rm{ = - x + 3}} \Rightarrow {\rm{dy = - dx}}\).

\(\begin{array}{l}{{\rm{C}}_{\rm{1}}}{\rm{:y = }}\frac{{\rm{x}}}{{\rm{2}}}{\rm{,0}} \le x \le {\rm{2}}\\{{\rm{C}}_{\rm{2}}}{\rm{:y = - x + 3,2}} \le x \le 3\end{array}\)

Thus,

\(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy = }}\int_{{{\rm{C}}_{\rm{1}}}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy + }}\int_{{{\rm{C}}_{\rm{2}}}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy}}\)

\(\begin{array}{l}{\rm{ = }}\int_{\rm{0}}^{\rm{2}} {\left( {\left( {{\rm{x + 2 \times }}\frac{{\rm{x}}}{{\rm{2}}}} \right){\rm{dx + }}{{\rm{x}}^{\rm{2}}}\frac{{{\rm{dx}}}}{{\rm{2}}}} \right)} {\rm{ + }}\int_{\rm{2}}^{\rm{3}} {\left( {{\rm{(x + 2 \times - x + 3)dx + }}{{\rm{x}}^{\rm{2}}}{\rm{ - dx}}} \right)} \\{\rm{ = }}\int_{\rm{0}}^{\rm{2}} {\left( {{\rm{2xdx + }}\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{2}}}{\rm{dx}}} \right)} {\rm{ + }}\int_{\rm{2}}^{\rm{3}} {{\rm{(6 - x)}}} {\rm{dx - }}{{\rm{x}}^{\rm{2}}}{\rm{dx}}\\{\rm{ = }}\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}\frac{{{{\rm{x}}^{\rm{3}}}}}{{\rm{6}}}} \right)_{\rm{0}}^{\rm{2}}{\rm{ + }}\left( {{\rm{6x - }}\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{2}}}{\rm{ - }}\frac{{{{\rm{x}}^{\rm{3}}}}}{{\rm{3}}}} \right)_{\rm{2}}^{\rm{3}}\\{\rm{ = 4 + }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{ + 6 - }}\frac{{\rm{5}}}{{\rm{2}}}{\rm{ - }}\frac{{{\rm{19}}}}{{\rm{3}}}\\{\rm{ = 10 - }}\frac{{\rm{5}}}{{\rm{2}}}{\rm{ - 5}}\\{\rm{ = }}\frac{{\rm{5}}}{{\rm{2}}}{\rm{.}}\end{array}\)

Therefore the line integral \(\int_{\rm{C}} {{\rm{(x + 2y)}}} {\rm{dx + }}{{\rm{x}}^{\rm{2}}}{\rm{dy = }}\frac{{\rm{5}}}{{\rm{2}}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.