Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 817
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the value of \(\iint_S ydS\)

The value of \(\iint_S ydS\) is\(\frac{2}{3}(2\sqrt 2 - 1)\).

See the step by step solution

Step by Step Solution

Step 1: Concept of surface integral 

The surface integral is a generalization of multiple integrals that allows for surface integration. The surface integral is sometimes referred to as the double integral. We can integrate across a surface in either the scalar or vector fields for any given surface. The function returns the scalar value in the scalar field and function returns the vector value in the vector field.

“The surface integral of \(f\)over the surface \(S\) as \(\iint_S f(x,y,z)dS = \mathop {\lim }\limits_{\max \Delta {u_i},\Delta {v_j} \to 0} \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n f } \left( {P_{ij}^*} \right)\Delta {S_{ij}}\) where, \(\Delta {S_{ij}} \approx \left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|\Delta {u_i}\Delta {v_j}\).”

Step 2: Find the value of \({{\rm{r}}_u} \times {{\rm{r}}_v}\)

As given data;

\(r(u,v) = \langle u\cos v,u\sin v,v\rangle ,0 \le u \le 1\) and \(0 \le v \le \pi .\)

Formula used;

…… (1)

\({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}{\rm{i}} + \frac{{\partial y}}{{\partial u}}{\rm{j}} + \frac{{\partial z}}{{\partial u}}{\rm{k}}\) …… (2)

\({r_v} = \frac{{\partial x}}{{\partial v}}{\rm{i}} + \frac{{\partial y}}{{\partial v}}{\rm{j}} + \frac{{\partial z}}{{\partial v}}{\rm{k}}\) …… (3)

For find the value of \({{\rm{r}}_u}\);

Substitute \(u\cos v\) for \(x,u\sin v\) for \(y\) and \(v\) for \(z\) in equation (2);

\(\begin{array}{l}{{\rm{r}}_u} = \frac{\partial }{{\partial u}}(u\cos v){\rm{i}} + \frac{\partial }{{\partial u}}(u\sin v){\rm{j}} + \frac{\partial }{{\partial u}}(v){\rm{k}}\\{{\rm{r}}_u} = (\cos v)\frac{\partial }{{\partial u}}(u){\rm{i}} + (\sin v)\frac{\partial }{{\partial u}}(u){\rm{j}} + (v)\frac{\partial }{{\partial u}}(1){\rm{k}}\\{{\rm{r}}_u} = \cos v{\rm{i}} + \sin v{\rm{j}} + 0{\rm{k}}\\{{\rm{r}}_u} = \cos v{\rm{i}} + \sin v{\rm{j}}\end{array}\)

For find the value of \({{\rm{r}}_v}\);

Substitute \(u\cos v\) for \(x,u\sin v\) for \(y\) and \(v\) for \(z\) in equation (3);

\(\begin{array}{l}{{\rm{r}}_v} = \frac{\partial }{{\partial v}}(u\cos v){\rm{i}} + \frac{\partial }{{\partial v}}(u\sin v){\rm{j}} + \frac{\partial }{{\partial v}}(v){\rm{k}}\\{{\rm{r}}_v} = (u)\frac{\partial }{{\partial v}}(\cos v){\rm{i}} + (u)\frac{\partial }{{\partial v}}(\sin v){\rm{j}} + \frac{\partial }{{\partial v}}(v){\rm{k}}\\{{\rm{r}}_v} = u( - \sin v){\rm{i}} + u\cos v{\rm{j}} + {\rm{k}}\\{{\rm{r}}_v} = - u\sin v{\rm{i}} + u\cos v{\rm{j}} + {\rm{k}}\end{array}\)

For find the value of \({{\rm{r}}_u} \times {{\rm{r}}_v}\);

Step 3: Find \(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right|\)

\(\begin{array}{l}\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = |\sin v{\rm{i}} - \cos v{\rm{j}} + u{\rm{k}}|\\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{(\sin v)}^2} + {{\left( { - {{\cos }^2}v} \right)}^2} + {{(u)}^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{\sin }^2}v + {{\cos }^2}v + {u^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {\left( {{{\sin }^2}v + {{\cos }^2}v} \right) + {u^2}} \end{array}\)

Simplify the equation;

\(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {1 + {u^2}} \)

Step 4: Find 

Modify equation (1) as follows;

\(\iint_S ydS = \iint_D y\left( {\left| {{r_u} \times {r_v}} \right|} \right)dA\)

Apply limits and substitute \(u\sin v\) for \(y\) and \(\sqrt {1 + {u^2}} \) for \(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right|\);

\(\begin{aligned}\iint_S ydS &= \int_0^1 {\int_0^\pi {(u\sin v)} } \left( {\sqrt {1 + {u^2}} } \right)dudv\hfill \\\iint_S ydS &= \int_0^1 u \sqrt {1 + {u^2}} du\int_0^\pi {\sin } vdv \hfill \\\end{aligned} \)

…… (4)

Apply substitution method;

\(\begin{aligned}t &= 1 + {u^2}\\dt &= 0 + 2udu\\dt &= 2udu\end{aligned}\)

Find new limits;

\(\begin{array}{l}{t_{{\rm{upper }}}} = 1 + {(1)^2}\\{t_{{\rm{upper }}}} = 1 + 1\\{t_{{\rm{upper }}}} = 2\end{array}\)

For lower limit,

\(\begin{array}{l}{t_{{\rm{lower }}}} = 1 + {(0)^2}\\{t_{{\rm{lower }}}} = 1 + 0\\{t_{{\rm{lower }}}} = 1\end{array}\)

Apply new limits and substitute \(t\) for \(1 + {u^2},2udu\) for \(dt\);

\(\begin{aligned}\iint_S ydS &= \int_1^2 {\frac{1}{2}} \sqrt t dt\int_0^\pi {\sin } vdv \hfill \\\iint_S ydS &= \frac{1}{2}\int_1^2 {\left( {{t^{\frac{1}{2}}}} \right)} dt\int_0^\pi {\sin } vdv \hfill \\\iint_S ydS &= \frac{1}{2}\left[ {\frac{{{t^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}}} \right]_1^2[ - \cos v]_0^\pi \hfill \\\iint_S ydS &= \frac{1}{2}\left( {\frac{2}{3}} \right)\left[ {{t^{\frac{3}{2}}}} \right]_1^2[ - \cos v]_0^\pi \hfill \\\end{aligned} \)

Simplify the equation;

\(\begin{aligned}\iint_S ydS &= \frac{1}{2}\left( {\frac{2}{3}} \right)\left[ {{{(2)}^{\frac{3}{2}}} - {{(1)}^{\frac{3}{2}}}} \right][ - \cos \pi + \cos 0] \hfill \\\iint_S ydS &= \frac{1}{3}\left[ {{{(2)}^{\frac{3}{2}}} - 1} \right][ - ( - 1) + (1)] \hfill \\\iint_S ydS &= \frac{1}{3}\left[ {{{(2)}^{\frac{3}{2}}} - 1} \right](2) \hfill \\\iint_S ydS &= \frac{2}{3}(2\sqrt 2 - 1) \hfill \\\end{aligned} \)

Thus, the value of \(\iint_S ydS\) is\(\frac{2}{3}(2\sqrt 2 - 1)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.