Americas
Europe
Q7E
Expert-verifiedFind the value of \(\iint_S ydS\)
The value of \(\iint_S ydS\) is\(\frac{2}{3}(2\sqrt 2 - 1)\).
The surface integral is a generalization of multiple integrals that allows for surface integration. The surface integral is sometimes referred to as the double integral. We can integrate across a surface in either the scalar or vector fields for any given surface. The function returns the scalar value in the scalar field and function returns the vector value in the vector field.
“The surface integral of \(f\)over the surface \(S\) as \(\iint_S f(x,y,z)dS = \mathop {\lim }\limits_{\max \Delta {u_i},\Delta {v_j} \to 0} \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n f } \left( {P_{ij}^*} \right)\Delta {S_{ij}}\) where, \(\Delta {S_{ij}} \approx \left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|\Delta {u_i}\Delta {v_j}\).”
As given data;
\(r(u,v) = \langle u\cos v,u\sin v,v\rangle ,0 \le u \le 1\) and \(0 \le v \le \pi .\)
Formula used;
…… (1)
\({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}{\rm{i}} + \frac{{\partial y}}{{\partial u}}{\rm{j}} + \frac{{\partial z}}{{\partial u}}{\rm{k}}\) …… (2)
\({r_v} = \frac{{\partial x}}{{\partial v}}{\rm{i}} + \frac{{\partial y}}{{\partial v}}{\rm{j}} + \frac{{\partial z}}{{\partial v}}{\rm{k}}\) …… (3)
For find the value of \({{\rm{r}}_u}\);
Substitute \(u\cos v\) for \(x,u\sin v\) for \(y\) and \(v\) for \(z\) in equation (2);
\(\begin{array}{l}{{\rm{r}}_u} = \frac{\partial }{{\partial u}}(u\cos v){\rm{i}} + \frac{\partial }{{\partial u}}(u\sin v){\rm{j}} + \frac{\partial }{{\partial u}}(v){\rm{k}}\\{{\rm{r}}_u} = (\cos v)\frac{\partial }{{\partial u}}(u){\rm{i}} + (\sin v)\frac{\partial }{{\partial u}}(u){\rm{j}} + (v)\frac{\partial }{{\partial u}}(1){\rm{k}}\\{{\rm{r}}_u} = \cos v{\rm{i}} + \sin v{\rm{j}} + 0{\rm{k}}\\{{\rm{r}}_u} = \cos v{\rm{i}} + \sin v{\rm{j}}\end{array}\)
For find the value of \({{\rm{r}}_v}\);
Substitute \(u\cos v\) for \(x,u\sin v\) for \(y\) and \(v\) for \(z\) in equation (3);
\(\begin{array}{l}{{\rm{r}}_v} = \frac{\partial }{{\partial v}}(u\cos v){\rm{i}} + \frac{\partial }{{\partial v}}(u\sin v){\rm{j}} + \frac{\partial }{{\partial v}}(v){\rm{k}}\\{{\rm{r}}_v} = (u)\frac{\partial }{{\partial v}}(\cos v){\rm{i}} + (u)\frac{\partial }{{\partial v}}(\sin v){\rm{j}} + \frac{\partial }{{\partial v}}(v){\rm{k}}\\{{\rm{r}}_v} = u( - \sin v){\rm{i}} + u\cos v{\rm{j}} + {\rm{k}}\\{{\rm{r}}_v} = - u\sin v{\rm{i}} + u\cos v{\rm{j}} + {\rm{k}}\end{array}\)
For find the value of \({{\rm{r}}_u} \times {{\rm{r}}_v}\);
\(\begin{array}{l}\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = |\sin v{\rm{i}} - \cos v{\rm{j}} + u{\rm{k}}|\\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{(\sin v)}^2} + {{\left( { - {{\cos }^2}v} \right)}^2} + {{(u)}^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{\sin }^2}v + {{\cos }^2}v + {u^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {\left( {{{\sin }^2}v + {{\cos }^2}v} \right) + {u^2}} \end{array}\)
Simplify the equation;
\(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {1 + {u^2}} \)
Modify equation (1) as follows;
\(\iint_S ydS = \iint_D y\left( {\left| {{r_u} \times {r_v}} \right|} \right)dA\)
Apply limits and substitute \(u\sin v\) for \(y\) and \(\sqrt {1 + {u^2}} \) for \(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right|\);
\(\begin{aligned}\iint_S ydS &= \int_0^1 {\int_0^\pi {(u\sin v)} } \left( {\sqrt {1 + {u^2}} } \right)dudv\hfill \\\iint_S ydS &= \int_0^1 u \sqrt {1 + {u^2}} du\int_0^\pi {\sin } vdv \hfill \\\end{aligned} \)
…… (4)
Apply substitution method;
\(\begin{aligned}t &= 1 + {u^2}\\dt &= 0 + 2udu\\dt &= 2udu\end{aligned}\)
Find new limits;
\(\begin{array}{l}{t_{{\rm{upper }}}} = 1 + {(1)^2}\\{t_{{\rm{upper }}}} = 1 + 1\\{t_{{\rm{upper }}}} = 2\end{array}\)
For lower limit,
\(\begin{array}{l}{t_{{\rm{lower }}}} = 1 + {(0)^2}\\{t_{{\rm{lower }}}} = 1 + 0\\{t_{{\rm{lower }}}} = 1\end{array}\)
Apply new limits and substitute \(t\) for \(1 + {u^2},2udu\) for \(dt\);
\(\begin{aligned}\iint_S ydS &= \int_1^2 {\frac{1}{2}} \sqrt t dt\int_0^\pi {\sin } vdv \hfill \\\iint_S ydS &= \frac{1}{2}\int_1^2 {\left( {{t^{\frac{1}{2}}}} \right)} dt\int_0^\pi {\sin } vdv \hfill \\\iint_S ydS &= \frac{1}{2}\left[ {\frac{{{t^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}}} \right]_1^2[ - \cos v]_0^\pi \hfill \\\iint_S ydS &= \frac{1}{2}\left( {\frac{2}{3}} \right)\left[ {{t^{\frac{3}{2}}}} \right]_1^2[ - \cos v]_0^\pi \hfill \\\end{aligned} \)
Simplify the equation;
\(\begin{aligned}\iint_S ydS &= \frac{1}{2}\left( {\frac{2}{3}} \right)\left[ {{{(2)}^{\frac{3}{2}}} - {{(1)}^{\frac{3}{2}}}} \right][ - \cos \pi + \cos 0] \hfill \\\iint_S ydS &= \frac{1}{3}\left[ {{{(2)}^{\frac{3}{2}}} - 1} \right][ - ( - 1) + (1)] \hfill \\\iint_S ydS &= \frac{1}{3}\left[ {{{(2)}^{\frac{3}{2}}} - 1} \right](2) \hfill \\\iint_S ydS &= \frac{2}{3}(2\sqrt 2 - 1) \hfill \\\end{aligned} \)
Thus, the value of \(\iint_S ydS\) is\(\frac{2}{3}(2\sqrt 2 - 1)\).
94% of StudySmarter users get better grades.
Sign up for free