Americas
Europe
Q8E
Expert-verifiedFind the value of \(\iint_S {\left( {{x^2} + {y^2}} \right)}dS\)
The value of \(\iint_S {\left( {{x^2} + {y^2}} \right)}dS\) is \(\sqrt 2 \pi \).
The surface integral is a generalization of multiple integrals that allows for surface integration. The surface integral is sometimes referred to as the double integral. We can integrate across a surface in either the scalar or vector fields for any given surface. The function returns the scalar value in the scalar field and function returns the vector value in the vector field.
“The surface integral of \(f\)over the surface \(S\) as \(\iint_S f(x,y,z)dS = \mathop {\lim }\limits_{\max \Delta {u_i},\Delta {v_j} \to 0} \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^n f } \left( {P_{ij}^*} \right)\Delta {S_{ij}}\) where, \(\Delta {S_{ij}} \approx \left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|\Delta {u_i}\Delta {v_j}\).”
As given data;
\(r(u,v)\)\( = \left\langle {2uv,{u^2} - {v^2},{u^2} + {v^2}} \right\rangle {\rm{ and }}{u^2} + {v^2} \le 1.\)
Formula used;
\(\iint_S f(x,y,z)dS = \iint_D f(r(u,v))\left| {{r_u} \times {r_v}} \right|dA\) ..…. (1)
\({{\rm{r}}_u} = \frac{{\partial x}}{{\partial u}}{\rm{i}} + \frac{{\partial y}}{{\partial u}}{\rm{j}} + \frac{{\partial z}}{{\partial u}}{\rm{k}}\) ..…. (2)
\({r_v} = \frac{{\partial x}}{{\partial v}}{\rm{i}} + \frac{{\partial y}}{{\partial v}}{\rm{j}} + \frac{{\partial z}}{{\partial v}}{\rm{k}}\) …… (3)
For find the value of \({{\rm{r}}_u}\);
Substitute \(2uv\) for \(x,{u^2} - {v^2}\) for \(y\) and \({u^2} + {v^2}\) for \(z\) in equation (2);
\(\begin{array}{l}{{\bf{r}}_u} = \frac{\partial }{{\partial u}}(2uv){\rm{i}} + \frac{\partial }{{\partial u}}\left( {{u^2} - {v^2}} \right){\rm{j}} + \frac{\partial }{{\partial u}}\left( {{u^2} + {v^2}} \right){\rm{k}}\\{{\bf{r}}_u} = (2v){\rm{i}} + (2u - 0){\rm{j}} + (2u + 0){\rm{k}}\\{{\bf{r}}_u} = 2v{\rm{i}} + 2u{\rm{j}} + 2u{\rm{k}} = \langle 2v,2u,2u\rangle \end{array}\)
For find the value of \({r_v}\);
Substitute\(2uv\) for \(x,{u^2} - {v^2}\) for \(y\) and \({u^2} + {v^2}\) for \(z\) in equation (3);
\(\begin{array}{l}{{\bf{r}}_v} = \frac{\partial }{{\partial v}}(2uv){\rm{i}} + \frac{\partial }{{\partial v}}\left( {{u^2} - {v^2}} \right){\rm{j}} + \frac{\partial }{{\partial v}}\left( {{u^2} + {v^2}} \right){\rm{k}}\\{{\bf{r}}_v} = (2u){\rm{i}} + (0 - 2v){\rm{j}} + (0 + 2v){\rm{k}}\\{{\bf{r}}_v} = 2u{\rm{i}} - 2v{\rm{j}} + 2v{\rm{k}}\\{{\bf{r}}_v} = \langle 2u, - 2v,2v\rangle \end{array}\)
For find the value of \({{\rm{r}}_u} \times {{\rm{r}}_v}\);
\(\begin{array}{l}{{\rm{r}}_u} \times {{\rm{r}}_v} = \langle 2v,2u,2u\rangle \times \langle 2u, - 2v,2v\rangle \\{{\rm{r}}_u} \times {{\rm{r}}_v} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{2v}&{2u}&{2u}\\{2u}&{ - 2v}&{2v}\end{array}} \right|\\{{\rm{r}}_u} \times {{\rm{r}}_v} = (4uv + 4uv){\rm{i}} - \left( {4{v^2} - 4{u^2}} \right){\rm{j}} + \left( { - 4{v^2} - 4{u^2}} \right){\rm{k}}\\{{\rm{r}}_u} \times {{\rm{r}}_v} = 8uv{\rm{i}} - \left( {4{v^2} - 4{u^2}} \right){\rm{j}} + \left( { - 4{v^2} - 4{u^2}} \right){\rm{k}}\\{{\rm{r}}_u} \times {{\rm{r}}_v} = \left\langle {8uv,\left( {4{v^2} - 4{u^2}} \right),\left( { - 4{v^2} - 4{u^2}} \right)} \right\rangle \end{array}\)
\(\begin{array}{l}\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \left| {8uv,\left( {4{v^2} - 4{u^2}} \right),\left( { - 4{v^2} - 4{u^2}} \right)} \right|\\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {{{(8uv)}^2} + {{\left( {4{v^2} - 4{u^2}} \right)}^2} + {{\left( { - 4{v^2} - 4{u^2}} \right)}^2}} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {64{u^2}{v^2} + \left( {16{v^4} - 32{v^2}{u^2} + 16{u^4}} \right) + \left( {16{v^4} + 32{v^2}{u^2} + 16{u^4}} \right)} \\\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right| = \sqrt {64{u^2}{v^2} + 32{v^4} + 32{u^4}} \end{array}\)
Simplify the equation;
\(\begin{aligned}\left| {{r_u} \times {r_v}} \right| &= \sqrt {32\left( {2{u^2}{v^2} + {v^4} + {u^4}} \right)} \hfill \\\left| {{r_u} \times {r_v}} \right| &= \sqrt {32{{\left( {{u^2} + {v^2}} \right)}^2}} \left\{ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right\} \hfill \\\left| {{r_u} \times {r_v}} \right| &= 4\sqrt 2 \left( {{u^2} + {v^2}} \right) \hfill \\\end{aligned}\)
Modify equation (1) as follows;
\(\iint_S {\left( {{x^2} + {y^2}} \right)}dS = \iint_D {\left( {{x^2} + {y^2}} \right)}\left( {\left| {{r_u} \times {r_v}} \right|} \right)dA\)
Substitute \(2uv\)for \(x,{u^2} - {v^2}\) for \(y\) and \(4\sqrt 2 \left( {{u^2} + {v^2}} \right)\) for \(\left| {{{\rm{r}}_u} \times {{\rm{r}}_v}} \right|\),
\(\begin{aligned}\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= \iint_D {\left( {{{(2uv)}^2} + {{\left( {{u^2} - {v^2}} \right)}^2}} \right)}\left( {4\sqrt 2 \left( {{u^2} + {v^2}} \right)} \right)dA \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= \iint_D {\left( {4{u^2}{v^2} + \left( {{u^4} - 2{u^2}{v^2} + {v^4}} \right)} \right)}\left( {4\sqrt 2 \left( {{u^2} + {v^2}} \right)} \right)dA \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \iint_D {\left( {{u^4} + 2{u^2}{v^2} + {v^4}} \right)}\left( {{u^2} + {v^2}} \right)dA \hfill \\\end{aligned} \)
\(\iint_S {\left( {{x^2} + {y^2}} \right)}dS = 4\sqrt 2 \iint_D {{{\left( {{u^2} + {v^2}} \right)}^3}}dA\) …… (4)
Let \(u = r\cos \theta ,v = r\sin \theta \) and limits for \(r\) and \(\theta \) are 0 to 1 and 0 to \(2\pi \).
Modify the equation (4) as follows;
\(\begin{aligned}\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \int_0^{2\pi } {} {\int_0^1 {\left[ {{{(r\cos \theta )}^2} + {{(r\sin \theta )}^2}} \right]} ^3}rdrd\theta \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \int_0^{2\pi } {} {\int_0^1 {\left[ {{r^2}\cos {\theta ^2} + {r^2}\sin {\theta ^2}} \right]} ^3}rdrd\theta \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \int_0^{2\pi } {} {\int_0^1 {\left[ {{r^2}(\cos {\theta ^2} + \sin {\theta ^2})} \right]} ^3}rdrd\theta \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \int_0^{2\pi } {} {\int_0^1 {\left[ {{r^2}} \right]} ^3}rdrd\theta \left\{ {\because \cos {\theta^2} + \sin {\theta ^2} = 1} \right\} \hfill \\\end{aligned}\)
Simplify the equation;
\(\begin{aligned}\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 \int_0^{2\pi } d \theta \int_0^1 {{r^7}} dr\hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 [\theta ]_0^{2\pi }\left[ {\frac{{{r^8}}}{}} \right]_0^1 \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 [(2\pi ) - 0]\left[ {\frac{1}{8}\left( {{1^8} - {0^8}} \right)} \right] \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= 4\sqrt 2 (2\pi )\left( {\frac{1}{8}} \right) \hfill \\\iint_S {\left( {{x^2} + {y^2}} \right)}dS &= \sqrt 2 \pi \hfill \\\end{aligned} \)
Thus, the value of \(\iint_S {\left( {{x^2} + {y^2}} \right)}dS\) is \(\sqrt 2 \pi \).
94% of StudySmarter users get better grades.
Sign up for free