Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q9E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 780
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Determine whether of not \({\bf{F}}\) is a conservative vector field. If it is, find a function \(f\) such that\({\bf{F}} = \nabla f\).

\({\bf{F}}(x,y) = \left( {\ln y + 2x{y^2}} \right){\bf{i}} + \left( {3{x^2}{y^2} + x/y} \right){\bf{j}}\)

The vector field \({\bf{F}}(x,y) = \left( {\ln y + 2x{y^3}} \right){\bf{i}} + \left( {3{x^2}{y^2} + \frac{x}{y}} \right){\bf{j}}\) is a conservative vector field and the potential function \(f\) is \(f(x,y) = x\ln y + {x^2}{y^3} + K\).

See the step by step solution

Step by Step Solution

Step 1: Given information

The given equation is \({\bf{F}}(x,y) - \left( {\ln y + 2x{y^2}} \right){\bf{i}} + \left( {3{x^2}{y^2} + x/y} \right){\bf{j}}\)

Step 2: Definition of conservative vector field

Consider vector function \({\bf{r}}(t),a \le t \le b\) with a smooth curve\(C\). Consider \(f\) is a differentiable function two or three variables of gradient function \(\nabla f\) and is continuous on curve\(C\). Then,

\(\int_c \nabla f \cdot d{\bf{r}} = f({\bf{r}}(b)) - f({\bf{r}}(a))\)

Step 3: find the function f of conservative vector field

Here,

\(\frac{{{\rm{ }}\partial P{\rm{ }}}}{{{\rm{ }}\partial {\rm{y }}}}\) is continuous first-order partial derivative of \(P\), and

\(\frac{{\partial Q}}{{\partial x}}\) is continuous first-order partial derivative of \(Q\).

Compare the vector field \({\bf{F}}(x,y) = \left( {\ln y + 2x{y^3}} \right){\bf{i}} + \left( {3{x^2}{y^2} + \frac{x}{y}} \right){\bf{j}}\) with \(\begin{aligned}{c}{\bf{F}}(x,y) = P(x,y){\bf{i}} + Q(x,y){\bf{j}}\\P = \ln y + 2x{y^3}\;\;\;{\kern 1pt} \left( 2 \right)\\Q = 3{x^2}{y^2} + \frac{x}{y}\;\;\;{\kern 1pt} \,\left( 3 \right)\end{aligned}\).

Apply partial differentiation with respect to \(y\) on both sides of equation (2).

\(\begin{aligned}{c}\frac{{\partial P}}{{\partial y}} &= \frac{d}{{dy}}\left( {\ln y + 2x{y^3}} \right)\\ &= \frac{\partial }{{\partial y}}(\ln y) + \frac{\partial }{{\partial y}}\left( {2x{y^3}} \right)\\ &= \frac{1}{y} + 2x\frac{\partial }{{\partial y}}\left( {{y^3}} \right)\\ &= \frac{1}{y} + 6x{y^2}\end{aligned}\)

Apply partial differentiation with respect to \(x\) on both sides of equation (3).

\(\begin{aligned}{c}\frac{{dQ}}{{dx}} &= \frac{\partial }{{dx}}\left( {3{x^2}{y^2} + \frac{x}{y}} \right)\\ &= \frac{\partial }{{dx}}\left( {3{x^2}{y^2}} \right) + \frac{\partial }{{dx}}\left( {\frac{x}{y}} \right)\\ &= {y^2}\frac{\partial }{{dx}}\left( {3{x^2}} \right) + \frac{1}{y}\frac{\partial }{{\partial x}}(x)\\&= 6x{y^2} + \frac{1}{y}\end{aligned}\)

Substitute \(6x{y^2} + \frac{1}{y}\) for \(\frac{{\partial P}}{{\partial y}}\) and \(6x{y^2} + \frac{1}{y}\) for \(\frac{{\partial Q}}{{dx}}\) in equation (1),

\(6x{y^2} + \frac{1}{y} = 6x{y^2} + \frac{1}{y}\)

Hence \({\bf{F}}(x,y) = \left( {\ln y + 2x{y^3}} \right){\bf{i}} + \left( {3{x^2}{y^2} + \frac{x}{y}} \right){\bf{j}}\) is conservative vector field.

Step 4: find the potential function of conservative vector field

Consider \(\nabla f = {f_x}(x,y){\bf{i}} + {f_Y}(x,y){\bf{j}}\).

Write the relation between the potential function \(f\) and vector field \({\bf{F}}\).

\(\nabla f = {\bf{F}}\)

Substitute \({f_x}(x,y){\rm{i}} + {f_y}(x,y){\rm{j}}\) for \(\nabla {f_{{\rm{, }}}}\)

\({\bf{F}} = {f_x}(x,y){\bf{i}} + {f_y}(x,y){\bf{j}}\)

Compare the equation \({\bf{F}}= {f_x}(x,y){\bf{i}} + {f_y}(x,y){\bf{j}}\) with \({\bf{F}}(x,y)= \left( {\ln y + 2x{y^3}} \right){\bf{i}} + \left( {3{x^2}{y^2} + \frac{x}{y}} \right){\bf{j}}\).

\({f_x}(x,y) = \ln y + 2x{y^3}\,\,\,\,\left( 4 \right)\)

\({f_y}(x,y) = 3{x^2}{y^2} + \frac{x}{y}\;\;\;{\kern 1pt} (5)\)

Integrate equation (4) with respect to \(x\).

\(\begin{aligned}{c}f(x,y)& = \int {\left( {\ln y + 2x{y^3}} \right)} dx\\& = \int {\ln } ydx + 2{y^3}\\\int x dx& = x\ln y + {x^2}{y^3} + g(y)\\f(x,y) &= x\ln y + {x^2}{y^3} + g(y)\,\,\,\,\,\,\left( 6 \right)\end{aligned}\)

Apply partial differentiation with respect to \(y\) on both sides of the above equation.

\(\begin{aligned}{c}{f_y}(x,y) &= \frac{\partial }{{dy}}\left( {x\ln y + {x^2}{y^3} + g(y)} \right)\\ &= \frac{\partial }{{dy}}(x\ln y) + \frac{\partial }{{\partial y}}\left( {{x^2}{y^3}} \right) + \frac{\partial }{{dy}}(g(y))\\& = x\frac{1}{y} + {x^2}\frac{\partial }{{dy}}\left( {{y^3}} \right) + {g^\prime }(y)\\ &= \frac{x}{y} + 3{x^2}{y^2} + {g^\prime }(y)\end{aligned}\)

Apply integration on both sides of equation.

\(\begin{aligned}\int{{{g}^{\prime }}}(y)dy=\int{0}dy\\g(y)=K\left\{\because\int{0}dt=K\right\}\end{aligned}\)

Substitute \(K\) for \(g(y)\) in equation (6),

\(f(x,y) = x\ln y + {x^2}{y^3} + K\)

Thus, the vector field \({\bf{F}}(x,y) = \left( {\ln y + 2x{y^3}} \right){\bf{i}} + \left( {3{x^2}{y^2} + \frac{x}{y}} \right){\bf{j}}\) is a conservative vector field and the potential function \(f\) is \(f(x,y) = x\ln y + {x^2}{y^3} + K\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.