Americas
Europe
Q12E
Expert-verifiedTo find a dot product \(u \cdot v\) and \(u \cdot w\).
The dot product of\({\rm{u}} \cdot {\rm{v}}\) is \(0.5\) and \({\rm{u}} \cdot {\rm{w}}\) is \(0\).
Formula Used:
Write the expression to find \({\rm{u}} \cdot {\rm{v}}\) in terms of \(\theta \).
\({\rm{u}} \cdot {\rm{v}} = |{\rm{u}}||{\rm{v}}|\cos \theta \)
Here,
\(|u|\)is the magnitude of vector \(u\),
\(|{\rm{v}}|\) is the magnitude of vector \(v\), and
\(\theta \) is the angle between vectors \(u\) and \(v\).
Consider the right angle triangle formed by \({\bf{u}}\) and \(v\).
Write the expression to find magnitude of \(v(|v|)\).
\(|v| = |u|\cos \theta \)
As \({\bf{u}}\), and \({\bf{w}}\) are the unit vectors, the value of \(|u|\)and \(|{\bf{w}}|\) is\(1\).
The angle between \({\bf{u}}\) and \(v\) is \({45^\circ }\).
In equation of\(|v|\), substitute\(1\) for \(|{\rm{u}}|\) and \({45^\circ }\) for \(\theta \).
\(\begin{aligned}{l}|v| &= (1)\cos \left( {{{45}^\circ }} \right)\\|v| &= (1)(0.707)\\|v| &= 0.707\end{aligned}\)
In equation of\({\rm{u}} \cdot {\rm{v}}\), substitute\(1\)for \(|{\rm{u}}|,0.707\) for \(|{\rm{v}}|\) and \({45^\circ }\) for \(\theta \).
\(\begin{aligned}{l}{\rm{u}} \cdot {\rm{v}} &= (1)(0.707)\cos \left( {{{45}^\circ }} \right)\\{\rm{u}} \cdot {\rm{v}} &= (0.707)(0.707)\\{\rm{u}} \cdot {\rm{v}} &= 0.49\\{\rm{u}} \cdot {\rm{v}} \cong 0.5\end{aligned}\)
Thus, \({\rm{u}} \cdot {\rm{v}}\) is \(0.5.\)
Rewrite equation of\({\rm{u}} \cdot {\rm{v}}\).
\({\rm{u}} \cdot {\rm{w}} = |{\rm{u}}||{\rm{w}}|\cos \theta \)
Substitute \(1\) for \(|{\rm{u}}|,1\) for \(|{\rm{w}}|\) and \({90^\circ }\) for \(\theta \).
\(\begin{aligned}{l}{\rm{u}} \cdot {\rm{w}} &= (1)(1)\cos \left( {{{90}^\circ }} \right)\\{\rm{u}} \cdot {\rm{w}} &= (1)(0)\\{\rm{u}} \cdot {\rm{w}} &= 0\end{aligned}\)
Thus, \({\rm{u}} \cdot {\rm{w}}\) is\(0\) .
94% of StudySmarter users get better grades.
Sign up for free