Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q20E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 565
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the two unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).

The unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\) are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).

See the step by step solution

Step by Step Solution

Step 1: Theorem used

The cross product of two vectors is orthogonal to both vectors, when their dot product is equal to zero.

Write the expression to find unit vector of vector\({\bf{a}}\)

Unit vector \( = \frac{{\rm{a}}}{{|{\rm{a}}|}}\)

Step 2: Find the cross product between \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\)

As given, \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).

Find the cross product between \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\)

\(\begin{array}{l}(j - k) \times (i + j) = \left| {\begin{array}{*{20}{c}}i&j&k\\0&1&{ - 1}\\1&1&0\end{array}} \right|\\(j - k) \times (i + j) = \left| {\begin{array}{*{20}{c}}1&{ - 1}\\1&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}0&1\\1&1\end{array}} \right|k\\(j - k) \times (i + j) = (0 + 1){\rm{i}} - (0 + 1){\rm{j}} + (0 - 1){\rm{k}}\\(j - k) \times (i + j) = {\rm{i}} - {\rm{j}} - {\rm{k}}\end{array}\)

Step 3: Find unit vectors

\(\begin{array}{l}{\rm{Unit vectors }} = \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{|{\rm{i}} - {\rm{j}} - {\rm{k}}|}}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {{{(1)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {1 + 1 + 1} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt 3 }}\end{array}\)

The unit vectors are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).

Thus, the two unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.