Americas
Europe
Q20E
Expert-verifiedFind the two unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).
The unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\) are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).
The cross product of two vectors is orthogonal to both vectors, when their dot product is equal to zero.
Write the expression to find unit vector of vector\({\bf{a}}\)
Unit vector \( = \frac{{\rm{a}}}{{|{\rm{a}}|}}\)
As given, \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).
Find the cross product between \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\)
\(\begin{array}{l}(j - k) \times (i + j) = \left| {\begin{array}{*{20}{c}}i&j&k\\0&1&{ - 1}\\1&1&0\end{array}} \right|\\(j - k) \times (i + j) = \left| {\begin{array}{*{20}{c}}1&{ - 1}\\1&0\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}0&1\\1&1\end{array}} \right|k\\(j - k) \times (i + j) = (0 + 1){\rm{i}} - (0 + 1){\rm{j}} + (0 - 1){\rm{k}}\\(j - k) \times (i + j) = {\rm{i}} - {\rm{j}} - {\rm{k}}\end{array}\)
\(\begin{array}{l}{\rm{Unit vectors }} = \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{|{\rm{i}} - {\rm{j}} - {\rm{k}}|}}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {{{(1)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt {1 + 1 + 1} }}\\{\rm{Unit vectors}} = \pm \frac{{{\rm{i}} - {\rm{j}} - {\rm{k}}}}{{\sqrt 3 }}\end{array}\)
The unit vectors are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).
Thus, the two unit vectors orthogonal to both \({\rm{j}} - {\rm{k}}\) and \({\rm{i}} + {\rm{j}}\).are \(\frac{1}{{\sqrt 3 }}{\rm{i}} - \frac{1}{{\sqrt 3 }}{\rm{j}} - \frac{1}{{\sqrt 3 }}{\rm{k}}\) and\( - \frac{1}{{\sqrt 3 }}{\rm{i}} + \frac{1}{{\sqrt 3 }}{\rm{j}} + \frac{1}{{\sqrt 3 }}{\rm{k}}\).
94% of StudySmarter users get better grades.
Sign up for free