Americas
Europe
Q30E
Expert-verified(a) To determine
To find: A nonzero vector orthogonal to the plane through the points \({\bf{P}}\), \({\bf{Q}}\) and \(R\).
(b) To determine
To find: The area of triangle \({\bf{PQ}}R\).
(a) The nonzero vector that runs through the points \[P\], \[Q\] and \[R\] is \(\langle - 1, - 7,6\rangle \) orthogonal to the plane.
(b) The area of triangle \(P{\rm{ }}Q{\rm{ }}R\) is \(\frac{1}{2}(\sqrt {86} )\).
A vector with at least one non-zero entry, at least in Rn or Cn, is called a non-zero vector. In general, a non-zero vector is one that is not the vector space's identity element for addition.
Two vectors are said to be orthogonal if they are perpendicular to one another. The dot product of the two vectors, in other words, is zero.
Formula
(i) Write the expression for cross product between \[a\] and \[b\] vectors.
\[a \times b = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|(1)\]
(ii) Consider the expression for area of the triangle in vector coordinate.
Area of triangle \( = \frac{1}{2}|a \times b|\left( 2 \right)\)
(a)
\[P(0,0, - 3),Q(4,2,0)andR(3,3,1)\]
The vectors \[\overrightarrow {PQ} \times \overrightarrow {PR} \] is perpendicular to both \[\overrightarrow {PQ} \] and \[\overrightarrow {PR} \], therefore perpendicular to the plane through \[P(0,0, - 3),Q(4,2,0)\] and \[R(3,3,1)\].
Find \[\overrightarrow {PQ} \].
\[\begin{array}{l}\overrightarrow {PQ} = Q(4,2,0) - P(0,0, - 3)\\\overrightarrow {PQ} = \langle (4 - 0),(2 - 0),(0 + 3)\rangle \\\overrightarrow {PQ} = \langle 4,2,3\rangle \end{array}\]
Find \(\overrightarrow {PR} \).
\[\begin{array}{l}\overrightarrow {PR} = R(3,3,1) - P(0,0, - 3)\\\overrightarrow {PR} = \langle (3 - 0),(3 - 0),(1 + 3)\rangle \\\overrightarrow {PR} = \langle 3,3,4\rangle \end{array}\]
Re-Modify equation (1).
\[\begin{array}{l}\overrightarrow {PQ} \times \overrightarrow {PR} = \left| {\begin{array}{*{20}{l}}2&3\\3&4\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}4&3\\3&4\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}4&2\\3&3\end{array}} \right|{\rm{k}}\\\overrightarrow {PQ} \times \overrightarrow {PR} = (8 - 9){\rm{i}} - (16 - ){\rm{j}} + (12 - 6){\rm{k}}\\\overrightarrow {PQ} \times \overrightarrow {PR} = - 1{\rm{i - 7j}} + 6{\rm{k}}\\\overrightarrow {PQ} \times \overrightarrow {PR} = \langle - 1, - 7,6\rangle \end{array}\]
Thus, the nonzero vector orthogonal to the plane through the points \(P\), \(Q\) and \(R\) is \(\langle - 1, - 7,6\rangle \).
(b)
Here, \({\rm{a}}\) and \({\bf{b}}\) are the vectors.
Re-modify equation\(\left( 2 \right)\).
Area of triangle \( = \frac{1}{2}|\overrightarrow {PQ} \times \overrightarrow {PR} |\)
We can Substituting, \(\langle - 1, - 7,6\rangle \) for \(\overrightarrow {PQ} \times \overrightarrow {PR} \),
Area of triangle \( = \frac{1}{2}|\langle 0,18, - 9\rangle |\)
\[\begin{array}{l} = \frac{1}{2}\left( {\sqrt {{{( - 1)}^2} + {{( - 7)}^2} + {{(6)}^2}} } \right)\\ = \frac{1}{2}(\sqrt {1 + 49 + 36} )\\ = \frac{1}{2}(\sqrt {86} )\end{array}\]
Thus, the area of triangle \(P{\rm{ }}Q{\rm{ }}R\) is \(\frac{1}{2}(\sqrt {86} )\).
94% of StudySmarter users get better grades.
Sign up for free