• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q44E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 565
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) Find all vectors \({\bf{v}}\) such that

\(\langle 1,2,1\rangle \times {\bf{v}} = \langle 3,1, - 5\rangle \)

(b) Explain why there is no vector \({\bf{v}}\) such that

\(\langle 1,2,1\rangle \times {\bf{v}} = \langle 3,1,5\rangle \)

(a) The vectors \({\bf{v}}\) is \(\langle a,2a - 5,a - 1\rangle \).

(b) There exists no vectors of \({\bf{v}}\) that satisfies the equation\(\langle 1,2,1\rangle \times v = \langle 3,1,5\rangle \).

See the step by step solution

Step by Step Solution

Step 1: Formula used to express cross product between vector \(a\) and \(b\)

The expression for cross product between \(a\) and \(b\) vectors is,

\(a \times b = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\)

Step 2: Calculation to find the vector \({\bf{v}}\)

(a)

It is given that,

\(\langle 1,2,1\rangle \times v = \langle 3,1,5\rangle \) …… (1)

Let \({\rm{v}} = \left\langle {{v_1},{v_2},{v_3}} \right\rangle \).

Compute \(\langle 1,2,1\rangle \times v\).

\(\begin{array}{l}\langle 1,2,1\rangle \times v = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\1&2&1\\{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}2&1\\{{v_2}}&{{v_3}}\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}1&1\\{{v_1}}&{{v_3}}\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}1&2\\{{v_1}}&{{v_2}}\end{array}} \right|{\rm{k}}\\ = \left( {2{v_3} - {v_2}} \right){\rm{i}} - \left( {{v_3} - {v_1}} \right){\rm{j}} + \left( {{v_2} - 2{v_1}} \right){\rm{k}}\\ = \left\langle {\left( {2{v_3} - {v_2}} \right),\left( {{v_1} - {v_3}} \right),\left( {{v_2} - 2{v_1}} \right)} \right\rangle \end{array}\)

Substitute \(\langle 3,1, - 5\rangle \) for \(\langle 1,2,1\rangle \times v\),

\(\langle 3,1, - 5\rangle = \left\langle {\left( {2{v_3} - {v_2}} \right),\left( {{v_1} - {v_3}} \right),\left( {{v_2} - 2{v_1}} \right)} \right\rangle \)

Compare the R.H.S (Right hand side) and L.H.S (Left hand side).

\(2{v_3} - {v_2} = 3\) …… (2)

\(2{v_3} - {v_2} = 3\) …… (3)

\({v_2} - 2{v_1} = - 5\) …… (4)

Rearrange equation (4).

\({v_2} = 2{v_1} - 5\) …… (5)

Rearrange equation (3).

\({v_3} = {v_1} - 1\) …… (6)

Substitute \({v_1} - 1\) for \({v_3}\) and \(2{v_1} - 5\) for \({v_2}\) in equation (2),

\(\begin{array}{l}2\left( {{v_1} - 1} \right) - \left( {2{v_1} - 5} \right) = 3\\2{v_1} - 2 - 2{v_1} + 5 = 3\\ - 2 + 5 = 3\\3 = 3\end{array}\)

The vectors of \({\bf{v}}\) is in a dependent system.

Let \({v_1} = a\).

Substitute \(a\) for \({v_1}\) in equation (5) and in equation (6),

\(\begin{array}{l}{v_2} = 2a - 5\\{v_3} = a - 1\end{array}\)

The vectors of \({\rm{v}}\) is \(\langle a,2a - 5,a - 1\rangle \).

Thus, the vectors of \({\bf{v}}\) is \(\langle a,2a - 5,a - 1\rangle \).

Step 3: Calculation to prove that there is no vector \({\bf{v}}\) such that\(\langle 1,2,1\rangle   \times {\bf{v}} = \langle 3,1,5\rangle \)

(b)

Let \({\rm{v}} = \left\langle {{v_1},{v_2},{v_3}} \right\rangle \).

Compute \(\langle 1,2,1\rangle \times v\).

\(\begin{array}{l}\langle 1,2,1\rangle \times v = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\1&2&1\\{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}2&1\\{{v_2}}&{{v_3}}\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}1&1\\{{v_1}}&{{v_3}}\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}1&2\\{{v_1}}&{{v_2}}\end{array}} \right|{\rm{k}}\\ = \left( {2{v_3} - {v_2}} \right){\rm{i}} - \left( {{v_3} - {v_1}} \right){\rm{j}} + \left( {{v_2} - 2{v_1}} \right){\rm{k}}\\ = \left\langle {\left( {2{v_3} - {v_2}} \right),\left( {{v_1} - {v_3}} \right),\left( {{v_2} - 2{v_1}} \right)} \right\rangle \end{array}\)

Substitute \(\langle 3,1,5\rangle \) for \(\langle 1,2,1\rangle \times {\rm{v}}\).

\(\langle 3,1, - 5\rangle = \left\langle {\left( {2{v_3} - {v_2}} \right),\left( {{v_1} - {v_3}} \right),\left( {{v_2} - 2{v_1}} \right)} \right\rangle \)

Compare the R.H.S (Right hand side) and the L.H.S (Left hand side) of the above equation.

\(2{v_3} - {v_2} = 3\) …… (7)

\({v_1} - {v_3} = 1\) …… (8)

\({v_2} - 2{v_1} = 5\) …… (9)

Rearrange equation (9).

\({v_2} = 2{v_1} + 5\) …… (10)

Rearrange equation (8).

\({v_3} = {v_1} - 1(11)\)

Substitute \({v_1} - 1\) for \({v_3}\) and \(2{v_1} + 5\) for \({v_2}\) in equation (7),

\(\begin{array}{l}2\left( {{v_1} - 1} \right) - \left( {2{v_1} + 5} \right) = 3\\2{v_1} - 2 - 2{v_1} - 5 = 3\\ - 2 - 5 = 3\\ - 7 = 3\end{array}\)

As LHS and RHS of the equation is not equal, it is an inconsistent system and has no solutions.

Hence, there exists no vectors of \({\bf{v}}\) that satisfies the equation\(\langle 1,2,1\rangle \times v = \langle 3,1,5\rangle \).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.