Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q45E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 565
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) Let \(P\) be a point not on the line \(L\) that passes through the points \(Q\) and \(R\). Show that the distance \(d\) from the point \(P\) to the line \(L\) is

\(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\)

where \({\bf{a}} = \overrightarrow {QR} \) and \({\bf{b}} = \overrightarrow {QP} \).

(b) Use the formula in part (a) to find the distance from the point \(P(1,1,1)\) to the line through \(Q(0,6,8)\) and \(R( - 1,4,7)\).

(a) The distance \(d\) from the point \(P\) to the line \(L\) is \(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\)

(b) The distance \((d)\) from the point \(P(1,1,1)\) to the line through the \(Q(0,6,8)\) and \(R( - 1,4,7)\) is \(\sqrt {\frac{{97}}{3}} \).

See the step by step solution

Step by Step Solution

Step 1: Formula to find \(|{\bf{a}} \times {\bf{b}}|\) in terms of \(\theta \)

(a)

The equation to find \(|{\bf{a}} \times {\bf{b}}|\) in terms of \(\theta \).

\(|{\bf{a}} \times {\bf{b}}| = |{\bf{a}}||{\bf{b}}|\sin \theta \)

Rearrange the equation.

\(\sin \theta = \frac{{|{\bf{a}}||{\bf{b}}|}}{{|{\bf{a}} \times {\bf{b}}|}}\)

Step 2: Calculation to show that the distance \(d\) from the point \(P\) to the line \(L\) is \(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\)

It is given that,

\({\bf{a}} = \overrightarrow {QR} \) and \({\bf{b}} = \overrightarrow {QP} \)

Let \(P\) be a point not on the line \(L\) that passes through the points \(Q\) and \(R\) as shown in Figure 1.

Here,

\(|\overrightarrow {PS} | = d\) that is, the perpendicular length from the point to line.

From triangle \(PQS\), write the expression for \(\sin \theta \).

\(\sin \theta = \frac{{|\overrightarrow {PS} |}}{{|\overrightarrow {QP} |}}\)

Substitute \(d\) for \(|\overrightarrow {PS} |\) and \(|{\bf{b}}|\) for \(|\overrightarrow {QP} |\),

\(\sin \theta = \frac{d}{{|{\bf{b}}|}}\)

Rearrange the equation.

\(d = \sin \theta |{\bf{b}}|\)

Substitute \(\frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}||{\bf{b}}|}}\) for \(\sin \theta \),

\(\begin{array}{l}d = \left( {\frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}||{\bf{b}}|}}} \right)|{\bf{b}}|\\ = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\end{array}\)

Thus, the distance \(d\) from the point \(P\) to the line \(L\) is \(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}\).

Step 3: Formula to express the cross product between the vectors \({\bf{a}}\) and \({\bf{b}}\)

(b)

The equation for the cross product between the vectors \({\bf{a}}\) and \({\bf{b}}\) is,

\({\bf{a}} \times {\bf{b}} = \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\) …… (1)

The magnitude of a three-dimensional vector \({\bf{a}} = \left\langle {{a_1},{a_2},{a_3}} \right\rangle \) is,

\(|{\bf{a}}| = \sqrt {a_1^2 + a_2^2 + a_3^2} {\rm{ }}\) …… (2)

The equation for distance \(d\) from the point \(P\) to the line \(L\) is,

\(d = \frac{{|{\bf{a}} \times {\bf{b}}|}}{{|{\bf{a}}|}}{\rm{ }}\) …… (3)

Step 4: Calculation to find the distance from the point \(P(1,1,1)\) to the line through \(Q(0,6,8)\) and \(R( - 1,4,7)\)

Find \({\bf{a}} = \overrightarrow {QR} \).

\(\begin{array}{l}{\bf{a}} = \overrightarrow {QR} \\ = R( - 1,4,7) - Q(0,6,8)\\ = \langle ( - 1,0),(4, - 6),(7, - 8)\rangle \\ = \langle - 1, - 2, - 1\rangle \end{array}\)

Find \({\bf{b}} = \overrightarrow {QP} \).

\(\begin{array}{l}{\bf{b}} = \overrightarrow {QP} \\ = P(1,1,1) - Q(0,6,8)\\ = \langle ( - 1,0),(1, - 6),(1, - 8)\rangle \\ = \langle 1, - 5,7\rangle \end{array}\)

Substitute \( - 1\) for \({a_1}\), \( - 2\) for \({a_2}\), \( - 3\) for \({a_3}\), \(1\) for \({b_1}\), \( - 5\) for \({b_2}\) and \( - 7\) for \({b_3}\) in equation (1),

\(\begin{array}{l}{\bf{a}} \times {\bf{b}} = \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{ - 1}&{ - 2}&{ - 1}\\1&{ - 5}&{ - 7}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}{ - 2}&{ - 1}\\{ - 5}&{ - 7}\end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&{ - 7}\end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\1&{ - 5}\end{array}} \right|{\bf{k}}\\ = (14 - 5){\bf{i}} - (7 + 1){\bf{j}} + (5 + 2){\bf{k}}\\ = 9{\bf{i}} - 8{\bf{j}} + 7{\bf{k}}\end{array}\)

\({\bf{a}} \times {\bf{b}} = \langle 9, - 8,7\rangle \)

Substitute \( - 1\) for \({a_1}\), \( - 2\) for \({a_2}\) and \( - 1\) for \({a_3}\) in equation (2),

\(\begin{array}{l}|{\bf{a}}| = \sqrt {{{( - 1)}^2} + {{( - 2)}^2} + {{( - 1)}^2}} \\ = \sqrt {1 + 4 + 1} \\ = \sqrt 6 \end{array}\)

Substitute \(\langle 9, - 8,7\rangle \) for \({\bf{a}} \times {\bf{b}}\) and \(\sqrt 6 \) for \(|{\bf{a}}|\) in equation (3),

\(\begin{array}{l}d = \frac{{|9, - 8,7\rangle \mid }}{{\sqrt 6 }}\\ = \frac{{\sqrt {{{(9)}^2} + {{( - 8)}^2} + {{(7)}^2}} }}{{\sqrt 6 }}\\ = \sqrt {\frac{{81 + 64 + 49}}{6}} \\ = \sqrt {\frac{{194}}{6}} \\d = \sqrt {\frac{{97}}{3}} \end{array}\)

The distance \((d)\) from the point \(P(1,1,1)\) to the line through the points \(Q(0,6,8)\) and \(R( - 1,4,7)\) is \(\sqrt {\frac{{97}}{3}} \).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.