Americas
Europe
Q47E
Expert-verifiedTo show: The expression \(|a \times b{|^2} = |a{|^2}|b{|^2} - {(a \cdot b)^2}\).
The expression \(|{\rm{a}} \times {\rm{b}}{|^2} = |{\rm{a}}{|^2}|\;{\rm{b}}{|^2} - {({\rm{a}} \cdot {\rm{b}})^2}\) is proved.
The expression to find \({\rm{a}} \cdot {\rm{b}}\] in terms of \(\theta \].
\({\rm{a}} \cdot {\rm{b}} = |{\rm{a}}||{\rm{b}}|\cos \theta \]
Here,
\(|a|\]is the magnitude of a vector,
\(|{\rm{b}}|\] is the magnitude of \({\bf{b}}\] vector, and
\(\theta \] is the angle between vectors \({\bf{a}}\] and \({\bf{b}}\].
Rearrange the equation.
\(\cos \theta = \frac{{{\rm{a}} \cdot {\rm{b}}}}{{|{\rm{a}}||{\rm{b}}|}}\)
Write the expression to find \(|{\rm{a}} \times {\rm{b}}|\) in terms of \(\theta \) as follows.
\(|{\rm{a}} \times {\rm{b}}| = |{\rm{a}}||{\rm{b}}|\sin \theta \)
Take square on both sides.
Substitute \(\frac{{{\rm{a}} \cdot {\rm{b}}}}{{|{\rm{a}}|{\rm{bb|}}}}\) for \(\cos \theta \),
\(\begin{array}{l}|{\rm{a}} \times {\rm{b}}{|^2} = |{\rm{a}}{|^2}|\;{\rm{b}}{|^2} - {\left( {|{\rm{a}}||{\rm{b}}|\left( {\frac{{{\rm{a}} \cdot {\rm{b}}}}{{|{\rm{a}}||{\rm{b}}|}}} \right)} \right]^2}\\ = |{\rm{a}}{|^2}|\;{\rm{b}}{|^2} - {({\rm{a}} \cdot {\rm{b}})^2}\end{array}\)
Thus, the expression \(|{\rm{a}} \times {\rm{b}}{|^2} = |{\rm{a}}{|^2}|\;{\rm{b}}{|^2} - {({\rm{a}} \cdot {\rm{b}})^2}\) is proved.
94% of StudySmarter users get better grades.
Sign up for free