• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q52E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 566
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Prove the formula \((a \times b) \cdot (c \times d) = \left| {\begin{array}{*{20}{c}}{a \cdot c}&{b \cdot c}\\{a \cdot d}&{b \cdot d}\end{array}} \right|\).

The formula \((a \times b) \cdot (c \times d) = \left| {\begin{array}{*{20}{l}}{a \cdot c}&{b \cdot c}\\{a \cdot d}&{b \cdot d}\end{array}} \right|\) is proved.

See the step by step solution

Step by Step Solution

Step 1: Concept of vectors.

A vector is an object that has both a magnitude as well as a direction.

Step 2: Write out \({\bf{a}} \times {\bf{b}}\)and \({\bf{c}} \times {\bf{d}}\) in component form.

\({\bf{a}} \times {\bf{b}} = \left\langle {{a_2}{b_3} - {a_3}{b_2},{a_3}{b_1} - {a_1}{b_3},{a_1}{b_2} - {a_2}{b_1}} \right\rangle \)

\({\bf{c}} \times {\bf{d}} = \left\langle {{c_2}{d_3} - {c_3}{d_2},{c_3}{d_1} - {c_1}{d_3},{c_1}{d_2} - {c_2}{d_1}} \right\rangle \)

\(({\bf{a}} \times {\bf{b}}) \cdot ({\bf{c}} \times {\bf{d}})\)

\( = \left( {{a_2}{b_3} - {a_3}{b_2}} \right)\left( {{c_2}{d_3} - {c_3}{d_2}} \right) + \left( {{a_3}{b_1} - {a_1}{b_3}} \right)\left( {{c_3}{d_1} - {c_1}{d_3}} \right)\)

\(\quad + \left( {{a_1}{b_2} - {a_2}{b_1}} \right)\left( {{c_1}{d_2} - {c_2}{d_1}} \right)\)

\(\begin{array}{l} = {a_2}{b_3}{c_2}{d_3} - {a_2}{b_3}{c_3}{d_2} - {a_3}{b_2}{c_2}{d_3} + {a_3}{b_2}{c_3}{d_2}\\ + {a_3}{b_1}{c_3}{d_1} - {a_3}{b_1}{c_1}{d_3} - {a_1}{b_3}{c_3}{d_1} + {a_1}{b_3}{c_1}{d_3}\\ + {a_1}{b_2}{c_1}{d_2} - {a_1}{b_2}{c_2}{d_1} - {a_2}{b_1}{c_1}{d_2} + {a_2}{b_1}{c_2}{d_1}\end{array}\)

\(\begin{array}{l} = {a_1}{b_2}{c_1}{d_2} + {a_1}{b_3}{c_1}{d_3} + {a_2}{b_1}{c_2}{d_1} + {a_2}{b_3}{c_2}{d_3}\\ + {a_3}{b_1}{c_3}{d_1} + {a_3}{b_2}{c_3}{d_2} - {a_2}{b_1}{c_1}{d_2} - {a_3}{b_1}{c_1}{d_3}\\ - {a_1}{b_2}{c_2}{d_1} - {a_3}{b_2}{c_2}{d_3} - {a_1}{b_3}{c_3}{d_1} - {a_2}{b_3}{c_3}{d_2}\end{array}\)

Step 3: Write the determinant of the right side of the equation in terms of components.

\(\left| {\begin{array}{*{20}{c}}{{\bf{a}} \cdot {\bf{c}}}&{{\bf{b}} \cdot {\bf{c}}}\\{{\bf{a}} \cdot {\bf{d}}}&{{\bf{b}} \cdot {\bf{d}}}\end{array}} \right| = ({\bf{a}} \cdot {\bf{c}})({\bf{b}} \cdot {\bf{d}}) - ({\bf{b}} \cdot {\bf{c}})({\bf{a}} \cdot {\bf{d}})\)

\(\begin{array}{l} = \left( {{a_1}{c_1} + {a_2}{c_2} + {a_3}{c_3}} \right)\left( {{b_1}{d_1} + {b_2}{d_2} + {b_3}{d_3}} \right)\\ - \left( {{b_1}{c_1} + {b_2}{c_2} + {b_3}{c_3}} \right)\left( {{a_1}{d_1} + {a_2}{d_2} + {a_3}{d_3}} \right)\end{array}\)

\(\begin{array}{l} = {a_1}{c_1}{b_1}{d_1} + {a_1}{c_1}{b_2}{d_2} + {a_1}{c_1}{b_3}{d_3}\\ + {a_2}{c_2}{b_1}{d_1} + {a_2}{c_2}{b_2}{d_2} + {a_2}{c_2}{b_3}{d_3}\\ + {a_3}{c_3}{b_1}{d_1} + {a_3}{c_3}{b_2}{d_2} + {a_3}{c_3}{b_3}{d_3}\\ - {b_1}{c_1}{a_1}{d_1} - {b_1}{c_1}{a_2}{d_2} - {b_1}{c_1}{a_3}{d_3}\\ - {b_2}{c_2}{a_1}{d_1} - {b_2}{c_2}{a_2}{d_2} - {b_2}{c_2}{a_3}{d_3}\\ - {b_3}{c_3}{a_1}{d_1} - {b_3}{c_3}{a_2}{d_2} - {b_3}{c_3}{a_3}{d_3}\end{array}\)

Sort into “abcd”

\(\begin{array}{l} = {a_1}{b_1}{c_1}{d_1} + {a_1}{b_2}{c_1}{d_2} + {a_1}{b_3}{c_1}{d_3}\\ + {a_2}{b_1}{c_2}{d_1} + {a_2}{b_2}{c_2}{d_2} + {a_2}{b_3}{c_2}{d_3}\\ + {a_3}{b_1}{c_3}{d_1} + {a_3}{b_2}{c_3}{d_2} + {a_3}{b_3}{c_3}{d_3}\\ - {a_1}{b_1}{d_1}{c_1} - {a_2}{b_1}{c_1}{d_2} - {a_3}{b_1}{c_1}{d_3}\\ - {a_1}{b_2}{c_2}{d_1} - {a_2}{b_2}{c_2}{d_2} - {a_3}{b_2}{c_2}{d_3}\\ - {a_1}{b_3}{c_3}{d_1} - {a_2}{b_3}{c_3}{d_2} - {a_3}{b_3}{c_3}{d_3}\end{array}\)

only the "1111", "2222", "3333" terms cancel out.

\(\begin{array}{l} = {a_1}{b_2}{c_1}{d_2} + {a_1}{b_3}{c_1}{d_3} + {a_2}{b_1}{c_2}{d_1}\\ + {a_2}{b_3}{c_2}{d_3} + {a_3}{b_1}{c_3}{d_1} + {a_3}{b_2}{c_3}{d_2}\\ - {a_2}{b_1}{c_1}{d_2} - {a_3}{b_1}{c_1}{d_3} - {a_1}{b_2}{c_2}{d_1}\\ - {a_3}{b_2}{c_2}{d_3} - {a_1}{b_3}{c_3}{d_1} - {a_2}{b_3}{c_3}{d_2}\end{array}\)

Step 4: Write the determinant of the right side of the equation in terms of components.

\(({\bf{a}} \times {\bf{b}}) \cdot ({\bf{c}} \times {\bf{d}}) = \left| {\begin{array}{*{20}{c}}{{\bf{a}} \cdot {\bf{c}}}&{{\bf{b}} \cdot {\bf{c}}}\\{{\bf{a}} \cdot {\bf{d}}}&{{\bf{b}} \cdot {\bf{d}}}\end{array}} \right|\)

So, it’s true.

Hence, the elements of the determinant are just scalars

\(\left| {\begin{array}{*{20}{l}}{{\bf{a}} \cdot {\bf{c}}}&{{\bf{b}} \cdot {\bf{c}}}\\{{\bf{a}} \cdot {\bf{d}}}&{{\bf{b}} \cdot {\bf{d}}}\end{array}} \right| = ({\bf{a}} \cdot {\bf{c}})({\bf{b}} \cdot {\bf{d}}) - ({\bf{b}} \cdot {\bf{c}})({\bf{a}} \cdot {\bf{d}})\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.