 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q5E

Expert-verified Found in: Page 556 ### Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280 # To find a dot product between $${\rm{a}}$$ and $${\rm{b}}$$.

The dot product $$a \cdot b$$ is $$19$$

See the step by step solution

## Step 1: Concept of the Dot Product

The minimum of two vectors are required to perform a dot product. The resultant dot product of two vectors is scalar. hence, the dot product is also known as a scalar product.

## Step 2: Calculation of the dot product

The given two vectors are$$a = \left\langle {4,1,\frac{1}{4}} \right\rangle$$ and $$b = \langle 6, - 3, - 8\rangle$$

Consider a general expression to find the dot product between two three-dimensional vectors.

\begin{aligned}{l}{\rm{a}} \cdot {\rm{b}} &= \left\langle {{a_1},{a_2},{a_3}} \right\rangle \cdot \left\langle {{b_1},{b_2},{b_3}} \right\rangle \\{\rm{a}} \cdot {\rm{b}} &= {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\end{aligned}

Substitute 4 for $${a_1},1$$ for $${a_2},\frac{1}{4}$$ for $${a_3},6$$ for $${b_1}, - 3$$ for $${b_2}$$ and $$- 8$$ for $${b_3}$$.

\begin{aligned}{l}a \cdot b &= (4)(6) + (1)( - 3) + \left( {\frac{1}{4}} \right)( - 8)\\a \cdot b &= 24 - 3 - 2\\a \cdot b &= 19\end{aligned}

Thus, $$a \cdot b$$ is $$19$$. ### Want to see more solutions like these? 