Americas
Europe
Q9E
Expert-verifiedFind the resultant vector of \(({\rm{i}} \times {\rm{j}}) \times {\rm{k}}\) using cross product.
The cross product \(({\rm{i}} \times {\rm{j}}) \times {\rm{k}}\) is 0.
Consider the following property
\(\begin{array}{l}{\rm{i}} \times {\rm{j}} = {\rm{k}}\\{\rm{k}} \times {\rm{k}} = 0\end{array}\)
As given\(({\rm{i}} \times {\rm{j}}) \times {\rm{k}} \ldots \ldots \ldots (1)\)
According to formula,
\({\rm{i}} \times {\rm{j}} = {\rm{k}}\)
\({\rm{k}} \times {\rm{k}} = 0\)
Substitute \(k\) for \(i \times j\) in equation (1),
\(\begin{array}{l}({\rm{i}} \times {\rm{j}}) \times {\rm{k}} = {\rm{k}} \times {\rm{k}}\\({\rm{i}} \times {\rm{j}}) \times {\rm{k}} = 0\end{array}\)
Thus, the cross product \(({\rm{i}} \times {\rm{j}}) \times {\rm{k}}\) is 0.
94% of StudySmarter users get better grades.
Sign up for free