• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q 2RP

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 79
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: In Problems 1-30, solve the equation.-

dydx-4y=32x2

The solution of the given equation is y=-8x2-4x-1+Ce4x

See the step by step solution

Step by Step Solution

Step 1: Given information and simplification

Given that, dydx-4y=32x21

Let P( x ) = -4.

Find the value of μx.

μx=ePxdx=e-4dx=e-4x

Multiply e-4x in equation (1) on both sides.

e-4xdydx-4e-4xy=32e-4xx2ddxe-4xy=32e-4xx2

Now integrate the equation on both sides.

ddxe-4xydx=32e-4xx2dxe-4xy=32e-4xx2dx2

Step 2: Evaluation method

Find the value of 32e-4xx2dx separately.

Let us take u=x2,dv=e-4xdx.

du=2xdx,v=-e-4x4.

Use the integration by parts formula.

32e-4xx2dx=32-x2e-4x4+xe-4x2dx32e-4xx2dx=32-x2e-4x4+12xe-4xdx3

Again integrate xe-4xdx separately.

u=x,dv=e-4xdu=dx,v=-e-4x4

Use the integration by parts method.

xe-4xdx=-xe-4x4+14e-4xdx=-xe-4x4+14-e-4x4+C1

Substitute in equation (3)

32e-4xx2dx=32-x2e-4x4+12-xe-4x4+14-e-4x4+C1=32-x2e-4x4-xe-4x8-e-4x32+C=-8x2e-4x-4xe-4x-e-4x+C

Now substitute in equation (2)

e-4xy=32e-4xx2dxe-4xy=-8x2e-4x-4xe-4x-e-4x+Cy=-8x2e-4x-4xe-4x-e-4x+Ce-4xy=-8x2-4x-1+Ce4x

So, the solution is data-custom-editor="chemistry" y=-8x2-4x-1+Ce4x

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.