Americas
Europe
Q2.6-2E
Expert-verifiedIn problems 1 - 8 identify (do not solve) the equation as homogeneous, Bernoulli, linear coefficients, or of the form . .
The given equation is the form of linear coefficient.
Equations of the form
When the right-hand side of the equation can be expressed as a function of the combination , where a and b are constants, that is, then the substitution transforms the equation into a separable one.
A first-order equation that can be written in the form , where P(x) and Q(x) are continuous on an interval (a,b) and n is a real number, is called a Bernoulli equation.
We have used various substitutions for y to transform the original equation into a new equation that we could solve. In some cases, we must transform both x and y into new variables, say u and v. This is the situation for equations with linear coefficients-that is, equations of the form
Given,
By Evaluating,
role="math" localid="1655099619700"
Let . Then, differentiate it to find the value of
Now,
.....................(1)
Integration equation (1),
role="math" localid="1655100433864"
substitute
role="math" localid="1655100444784"
It seems that the given equation is linear coefficient.
Therefore, the given equation is the form of linear coefficient.
94% of StudySmarter users get better grades.
Sign up for free