• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration


Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 271
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.


Short Answer

In Problems 19–24, convert the given second-order equation into the first-order system by setting v=y’. Then find all the critical points in the yv-plane. Finally, sketch (by hand or software) the direction fields, and describe the stability of the critical points (i.e., compare with Figure 5.12).


The point is an unstable saddle point (0, 0).

See the step by step solution

Step by Step Solution

Step 1: Find a critical point

Here the equation is d2ydt2+y+y5=0.

Put v=y'andv'=y''.

Then the system is;


For critical points equate the system equal to zero.


So, the critical point is (0, 0).

The phase plane equation is:


Step 2: Sketch

Therefore, the point is an unstable saddle point (0,0).

Most popular questions for Math Textbooks

Rigid Body Nutation. Euler’s equations describe the motion of the principal-axis components of the angular velocity of a freely rotating rigid body (such as a space station), as seen by an observer rotating with the body (the astronauts, for example). This motion is called nutation. If the angular velocity components are denoted by x, y, and z, then an example of Euler’s equations is the three-dimensional autonomous system

\(\begin{array}{l}\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = yz}}\\\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = - 2xz}}\\\frac{{{\bf{dz}}}}{{{\bf{dt}}}}{\bf{ = xy}}\end{array}\)

The trajectory of a solution x(t),y(t), z(t) to these equations is the curve generated by the points (x(t), y(t), z(t) ) in xyz-phase space as t varies over an interval I.

(a) Show that each trajectory of this system lies on the surface of a (possibly degenerate) sphere centered at the origin (0, 0, 0).[Hint: Compute\(\frac{{\bf{d}}}{{{\bf{dt}}}}{\bf{(}}{{\bf{x}}^{\bf{2}}}{\bf{ + }}{{\bf{y}}^{\bf{2}}}{\bf{ + }}{{\bf{z}}^{\bf{2}}}{\bf{)}}\)What does this say about the magnitude of the angular velocity vector?

(b) Find all the critical points of the system, i.e., all points\({\bf{(}}{{\bf{x}}_{\bf{o}}}{\bf{,}}{{\bf{y}}_{\bf{o}}}{\bf{,}}{{\bf{z}}_{\bf{o}}}{\bf{)}}\) such that \({\bf{x(t) = }}{{\bf{x}}_{\bf{o}}}{\bf{,y(t) = }}{{\bf{y}}_{\bf{o}}}{\bf{,z(t) = }}{{\bf{z}}_{\bf{o}}}\) is a solution. For such solutions, the angular velocity vector remains constant in the body system.

(c) Show that the trajectories of the system lie along the intersection of a sphere and an elliptic cylinder of the form\({{\bf{y}}^{\bf{2}}}{\bf{ + 2}}{{\bf{x}}^{\bf{2}}}{\bf{ = C}}\) for some constant C. [Hint: Consider the expression for dy/dx implied by Euler’s equations.]

(d) Using the results of parts (b) and (c), argue that the trajectories of this system are closed curves. What does this say about the corresponding solutions?

(e) Figure 5.19 displays some typical trajectories for this system. Discuss the stability of the three critical points indicated on the positive axes.


Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.