Americas
Europe
Q33E
Expert-verifiedA Problem of Current Interest. The motion of an ironbar attracted by the magnetic field produced by a parallel current wire and restrained by springs (see Figure 5.17) is governed by the equation\(\frac{{{{\bf{d}}^{\bf{2}}}{\bf{x}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - x + }}\frac{{\bf{1}}}{{{\bf{\lambda - x}}}}\) for \({\bf{ - }}{{\bf{x}}_{\bf{o}}}{\bf{ < x < \lambda }}\)where the constants \({{\bf{x}}_{\bf{o}}}\) and \({\bf{\lambda }}\) are, respectively, the distances from the bar to the wall and to the wire when thebar is at equilibrium (rest) with the current off.
For all answers follow all steps.
Let\({\bf{v = x'}}\,\,{\bf{then}}\,\,{\bf{v' = x''}}\).
The system is:
\(\begin{array}{c}\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = v}}\\\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = - x + }}\frac{{\bf{1}}}{{{\bf{\lambda - x}}}}\end{array}\)
Now,
\(\begin{array}{c}\frac{{{\bf{dv}}}}{{{\bf{dx}}}}{\bf{ = }}\frac{{{\bf{ - x + }}\frac{{\bf{1}}}{{{\bf{\lambda - x}}}}}}{{\bf{v}}}\\\int {{\bf{vdv}}} {\bf{ = }}\int {{\bf{ - x + }}\frac{{\bf{1}}}{{{\bf{\lambda - x}}}}{\bf{dx}}} \\\frac{{{{\bf{v}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ = - }}\frac{{{{\bf{x}}^{\bf{2}}}}}{{\bf{2}}}{\bf{ - ln(\lambda - x) + C}}\\{{\bf{v}}^{\bf{2}}}{\bf{ = - }}{{\bf{x}}^{\bf{2}}}{\bf{ - 2ln(\lambda - x) + C}}\\{\bf{v = \pm }}\sqrt {{\bf{C - }}{{\bf{x}}^{\bf{2}}}{\bf{ - 2ln(\lambda - x)}}} \end{array}\)
Now,
\(\begin{array}{c}{\bf{ - x + }}\frac{{\bf{1}}}{{{\bf{\lambda - x}}}}{\bf{ = 0}}\\{\bf{ - x(\lambda - x) + 1 = 0}}\\{{\bf{x}}^{\bf{2}}}{\bf{ - \lambda x + 1 = 0}}\\{\bf{x = }}\frac{{{\bf{\lambda \pm }}\sqrt {{{\bf{\lambda }}^{\bf{2}}}{\bf{ - 4}}} }}{{\bf{2}}}\end{array}\)
Now it is clear that \({\bf{\lambda < 2}}\)the result is negative so no real solutions. If \({\bf{\lambda > 2}}\) real solutions exist the critical points are\(\left( {\frac{{{\bf{\lambda \pm }}\sqrt {{{\bf{\lambda }}^{\bf{2}}}{\bf{ - 4}}} }}{{\bf{2}}}{\bf{,0}}} \right)\).
For λ=3
When \({\bf{\lambda = 1}}\) the bar will always be attracted to the magnet.
When\({\bf{\lambda = }}3\), the critical values are \(\left( {\frac{{{\bf{3 - }}\sqrt {\bf{5}} }}{{\bf{2}}}{\bf{,0}}} \right){\bf{and}}\left( {\frac{{{\bf{3 + }}\sqrt {\bf{5}} }}{{\bf{2}}}{\bf{,0}}} \right)\)
94% of StudySmarter users get better grades.
Sign up for free