Americas
Europe
Q39E
Expert-verifiedLet A, B and C represent three linear differential operators with constant coefficients; for example,
Where the a’s, b’s, and c’s are constants. Verify the following properties:
(a) Commutative laws:
(b) Associative laws:
(c) Distributive law:
Commutative laws:
Associative laws:
Distributive law:
.
Given that,
…… (1)
…… (2)
…… (3)
Let us prove the commutative property.
Case (1):
Then, find the L.H.S.
Now, R.H.S.
.So, A + B = B + A.
Case (2):
Therefore, AB = BA
To prove:
Case (1):
Henceforth, (A + B) + C = A + (B + C).
Case (2):
Hence, (AB) C = A (BC).
To prove: .
Then,
Consequently, A (B + C) = AB + AC.
94% of StudySmarter users get better grades.
Sign up for free