• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

Suggested languages for you:

Americas

Europe

Q5.3-29E

Expert-verified
Found in: Page 1

### Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

# Competing Species. Let pi(t) denote, respectively, the populations of three competing species ${{\mathbf{S}}}_{{\mathbf{i}}}{\mathbf{,}}{\mathbf{i}}{\mathbf{=}}{\mathbf{1}}{\mathbf{,}}{\mathbf{2}}{\mathbf{,}}{\mathbf{3}}{\mathbf{.}}$Suppose these species have the same growth rates, and the maximum population that the habitat can support is the same for each species. (We assume it to be one unit.) Also, suppose the competitive advantage that ${{\mathbf{S}}}_{{\mathbf{1}}}$ has over ${{\mathbf{S}}}_{{\mathbf{2}}}$ is the same as that of ${{\mathbf{S}}}_{{\mathbf{2}}}$ over ${{\mathbf{S}}}_{{\mathbf{3}}}$ and over. This situation is modeled by the system${\mathbf{p}}{{\mathbf{\text{'}}}}_{{\mathbf{1}}}{\mathbf{=}}{{\mathbf{p}}}_{{\mathbf{1}}}\mathbf{\left(}\mathbf{1}\mathbf{-}{{\mathbf{p}}}_{{\mathbf{1}}}{\mathbf{-}}{{\mathbf{ap}}}_{{\mathbf{2}}}{\mathbf{-}}{{\mathbf{bp}}}_{{\mathbf{3}}}{\mathbf{\right)}}\phantom{\rule{0ex}{0ex}}{\mathbf{p}}{{\mathbf{\text{'}}}}_{{\mathbf{2}}}{\mathbf{=}}{{\mathbf{p}}}_{{\mathbf{2}}}\mathbf{\left(}\mathbf{1}\mathbf{-}\mathbf{b}{{\mathbf{p}}}_{{\mathbf{1}}}{\mathbf{-}}{{\mathbf{p}}}_{{\mathbf{2}}}{\mathbf{-}}{{\mathbf{ap}}}_{{\mathbf{3}}}{\mathbf{\right)}}\phantom{\rule{0ex}{0ex}}{\mathbf{p}}{{\mathbf{\text{'}}}}_{{\mathbf{3}}}{\mathbf{=}}{{\mathbf{p}}}_{{\mathbf{3}}}\mathbf{\left(}\mathbf{1}\mathbf{-}\mathbf{a}{{\mathbf{p}}}_{{\mathbf{1}}}{\mathbf{-}}{{\mathbf{bp}}}_{{\mathbf{2}}}{\mathbf{-}}{{\mathbf{p}}}_{{\mathbf{3}}}{\mathbf{\right)}}$where a and b are positive constants. To demonstrate the population dynamics of this system when a = b = 0.5, use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the populations over the time interval [0, 10] under each of the following initial conditions:${\mathbf{\left(}}\mathbf{a}\mathbf{\right)}\mathbf{}{{\mathbf{p}}}_{{\mathbf{1}}}\mathbf{\left(}\mathbf{0}\mathbf{\right)}\mathbf{=}\mathbf{1}{\mathbf{.}}{\mathbf{0}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{2}}}{\mathbf{=}}{\mathbf{0}}{\mathbf{.}}{\mathbf{1}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{3}}}{\mathbf{=}}{\mathbf{0}}{\mathbf{.}}{\mathbf{1}}\phantom{\rule{0ex}{0ex}}{\mathbf{\left(}}\mathbf{b}\mathbf{\right)}\mathbf{}{{\mathbf{p}}}_{{\mathbf{1}}}\mathbf{\left(}\mathbf{0}\mathbf{\right)}\mathbf{=}\mathbf{0}{\mathbf{.}}{\mathbf{1}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{2}}}{\mathbf{=}}{\mathbf{1}}{\mathbf{.}}{\mathbf{0}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{3}}}{\mathbf{=}}{\mathbf{0}}{\mathbf{.}}{\mathbf{1}}\phantom{\rule{0ex}{0ex}}{\mathbf{\left(}}\mathbf{c}\mathbf{\right)}\mathbf{}{{\mathbf{p}}}_{{\mathbf{1}}}\mathbf{\left(}\mathbf{0}\mathbf{\right)}\mathbf{=}\mathbf{0}{\mathbf{.}}{\mathbf{1}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{2}}}{\mathbf{=}}{\mathbf{0}}{\mathbf{.}}{\mathbf{1}}{\mathbf{,}}{{\mathbf{p}}}_{{\mathbf{3}}}{\mathbf{=}}{\mathbf{1}}{\mathbf{.}}{\mathbf{0}}$

In all cases, the population approaches to 0.5.

See the step by step solution

## Given conditions

Given that the system is:

$\mathrm{p}{\text{'}}_{1}={\mathrm{p}}_{1}\left(1-{\mathrm{p}}_{1}-{\mathrm{ap}}_{2}-{\mathrm{bp}}_{3}\right)\phantom{\rule{0ex}{0ex}}\mathrm{p}{\text{'}}_{2}={\mathrm{p}}_{2}\left(1-\mathrm{b}{\mathrm{p}}_{1}-{\mathrm{p}}_{2}-{\mathrm{ap}}_{3}\right)\phantom{\rule{0ex}{0ex}}\mathrm{p}{\text{'}}_{3}={\mathrm{p}}_{3}\left(1-\mathrm{a}{\mathrm{p}}_{1}-{\mathrm{bp}}_{2}-{\mathrm{p}}_{3}\right)$

And

The initial conditions are:

${\mathrm{p}}_{1}\left(0\right)=1.0,{\mathrm{p}}_{2}=0.1,{\mathrm{p}}_{3}=0.1$

 T ${\mathrm{p}}_{1}$ ${\mathrm{p}}_{2}$ ${\mathrm{p}}_{3}$ 0 1 0.1 0.1 0.1 0.99035 0.103 0.1035 0.5 0.9574 0.1189 0.1189 1 0.9245 0.1406 0.140 1.5 0.8960 0.1647 0.164 3 0.817 0.245 0.245 4 0.766 0.298 0.298 5 0.7187 0.349 0.349 9 0.583 0.452 0.452 10.1 0.565 0.463 0.4638

## Solve for part (b)

The initial conditions are ${\mathrm{p}}_{1}\left(0\right)=0.1,{\mathrm{p}}_{2}=1.0,{\mathrm{p}}_{3}=0.1.$

 T ${p}_{1}$ ${p}_{2}$ ${p}_{3}$ 0 0.1 1 0.1 0.1 0.103 0.990 0.1035 0.5 0.118 0.957 0.1189 1 0.1406 0.9245 0.1406 1.5 0.1647 0.8960 0.164 3 0.245 0.8177 0.245 4 0.298 0.7668 0.298 5 0.344 0.7187 0.3449 9 0.452 0.583 0.452 10.1 0.463 0.565 0.4638

## Find the result of part (c)

The initials conditions are ${\mathrm{p}}_{1}\left(0\right)=0.1,{\mathrm{p}}_{2}=0.1,{\mathrm{p}}_{3}=1.0.$

 T ${p}_{1}$ ${p}_{2}$ ${p}_{3}$ 0 0.1 0.1 1 0.1 0.103 0.103 0.990 0.5 0.118 0.118 0.957 1 0.1406 0.1406 0.9245 1.5 0.1647 0.1647 0.8960 3 0.2452 0.2453 0.8117 4 0.2982 0.2982 0.7618 5 0.344 0.3449 0.7187 9 0.4521 0.4521 0.5834 10.1 0.463 0.4638 0.565

In all cases, the population approaches 0.5.

This is the required result.

## Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.