• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

1RP

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 415
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Problems 1 and 2, use the definition of the Laplace transform to determine L{f}.

f(t)={3,0t26-t,2<t

L{f(t)}(s)=3s+e-2ss-e-2ss2

See the step by step solution

Step by Step Solution

Step 1:Given Information

The given function is f(t)={3,0t26-t,2<t

Step 2: Determining the L{f}

Using the Laplace transform definition, we get

L{f(t)}=0e-stf(t)dt=023estdt+2(6t)estdt=3[ests]02+limN2N(6t)estdt=3s(1e2s)+limN2N(6t)estdt

Letrole="math" localid="1664044470656" 6t=uestdt=dvdt=duv=ests in second integral, then we can write as:

L{f(t)}=3s(1e2s)+limN((6t)ests2N2Nestsdt)=3s(1e2s)+limN4e2ss(6N)esNs+ests22N=3s(1e2s)+limN4e2ss(6N)esNs+esNs2e2ss2=3s(1e2s)+limN4e2sslimN(6N)esNs+limNesNs2limN4e2ss2

Simplify further as:

L{f(t)}=3s(1e2s)+4e2ss0+04e2ss2=3s(1e2s)+4e2ss4e2ss2=3s+e2sse2ss2

Step 3: Determining the Result

Thus, the required Laplace transform is L{f(t)}(s)=3s+e-2ss-e-2ss2

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.