• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7.4 - 7E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 374
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Determine the inverse Laplace transform of the given function.

2s+16s2+4s+13.

The inverse laplace transform of the given function is 2e-2tcos3t+4e-2tsin3t.

See the step by step solution

Step by Step Solution

Determining the inverse laplace transform

  • For a given transfer function H, the Inverse Laplace Transform takes the output Y(s) and determines what X(s) it is in terms of (s).
  • Consider a function F(s), if there is a function f(t) that is continuous on [0,) and satisfies L{f}=F then we say that f(t) is the inverse Laplace transform of F(s) and employ the notation
  • f=L-1{F}
  • L-1n!(s-a)n+1=eattn,n=1,2,

Find inverse laplace transform for the given function

The given function is 2s+16s2+4s+13.

Simplify 2s+16s2+4s+13 as follows:

2s+16s2+4s+4+9=2(s+8)(s2+4s+4)+9=2(s+2)+12(s+2)2+(3)2=2(s+2)(s+2)2+(3)2+12(s+2)2+(3)2

Find the inverse laplace transform of 2s+16s2+4s+4+9=2(s+2)(s+2)2+(3)2+12(s+2)2+(3)2 using L-1b(s-a)2+(b)2=eatsinbt and L-1b(s-a)2+(b)2=eatcosbt as:

L-12s+16s2+4s+4+9=L-12(s+2)(s+2)2+(3)2+12(s+2)2+(3)2 =2L-1s+2(s+2)2+(3)2 +4 L-13(s+2)2+(3)2 =2e-2tcos3t+4e-2tsin3t

Therefore, the inverse laplace transform of the given function is 2e-2tcos3t+4e-2tsin3t.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.