Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q18E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 131
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With

\({\bf{g(t) = f(t,f(t))}}\) , this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .

  1. Show that if g has a continuous derivative that is bounded in absolute value by B, then the rectangle approximation has error\(\left( {\bf{O}} \right){{\bf{h}}^{\bf{2}}}\); that is, for some constant M, \(\left| {\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} } \right| \le {\bf{M}}{{\bf{h}}^{\bf{2}}}\).This is called the local truncation error of the scheme. [Hint: Write \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} {\bf{ = }}\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {\left[ {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right]{\bf{dt}}} \). Next, using the mean value theorem, show that\(\left| {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right| \le {\bf{B}}\left| {{\bf{t - }}{{\bf{x}}_{\bf{n}}}} \right|\) . Then integrate to obtain the error bound\(\left( {\frac{{\bf{B}}}{{\bf{2}}}} \right){{\bf{h}}^{\bf{2}}}\).]
  2. In applying Euler’s method, local truncation errors occur in each step of the process and are propagated throughout the further computations. Show that the sum of the local truncation errors in part (a) that arise after n steps is (O)h. This is the global error, which is the same as the [ss1] [m2] convergence rate of Euler’s method.

  1. The required result gets by the mean value theorem i.e., \(\left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {g\,\left( t \right)\,dt - hg\,\left( {{x_n}} \right)} } \right| \le M\,{h^2}\).
  2. The sum of the local truncation error arises after n steps i.e., \(O\left( h \right)\).
See the step by step solution

Step by Step Solution

Step 1: Important hint.

For the solution apply mean value theorem.

Step 2: Find the integral value.

Here \(\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt \approx hg\left( {{x_n}} \right)} \) where \(h = {x_{n + 1}} - {x_n}\)

Assume that g has a continuous derivative that is bounded by B.

\(\left| {g'\left( y \right)} \right| \le B\).

According to the mean value theorem

\(\begin{array}{c}\frac{{g\left( t \right) - g\left( {{x_n}} \right)}}{{t - {x_n}}} = g'\left( y \right)\\g\left( t \right) - g\left( {{x_n}} \right) = g'\left( y \right).\left( {t - {x_n}} \right)\\\left| {g\left( t \right) - g\left( {{x_n}} \right)} \right| \le B\left| {t - {x_n}} \right|\end{array}\)

Step 3: Apply mode on an integral part.

Now,

\(\begin{array}{c}\left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt - hg\left( {{x_n}} \right)} } \right| = \left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {\left[ {g\left( t \right)dt - g\left( {{x_n}} \right)} \right]dt} } \right|\\ \le \int\limits_{{x_n}}^{{x_{n + 1}}} {\left| {g\left( t \right)dt - g\left( {{x_n}} \right)} \right|dt} \\ \le \int\limits_{{x_n}}^{{x_{n + 1}}} {B\left| {t - {x_n}} \right|dt} \\ = \left[ {\frac{{B\left( {t - {x_n}} \right)\left| {t - {x_n}} \right|}}{2}} \right]_{{x_n}}^{{x_{n + 1}}}\end{array}\)

\(\begin{array}{c} = - \left[ {\frac{{B\left( {{x_n} - {x_{n + 1}}} \right)\left| {{x_n} - {x_{n + 1}}} \right|}}{2}} \right]\\ = \frac{{B{h^2}}}{2}\end{array}\)

Let \(M = \frac{B}{2}\) then

\(\left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt - hg\left( {{x_n}} \right)} } \right| \le M{h^2}\)

Step 4: use the concept of part (a).

Let \(a = {x_n},b = {x_{n + 1}}\)

From part (a) the local truncation error of the scheme is \(\frac{{\left( B \right){h^2}}}{2}\) and \(h = \frac{{b - a}}{n}\).

Step 5: Finding the result apply the result on n steps.

After n steps the result is

\(\begin{array}{c} = h\frac{{B\left( {b - a} \right)}}{2}\\ = O\left( h \right)\end{array}\)

Hence, the sum of the local truncation error arises after n steps i.e., \(O\left( h \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.