Americas
Europe
Q18E
Expert-verifiedLocal versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With
\({\bf{g(t) = f(t,f(t))}}\) , this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .
For the solution apply mean value theorem.
Here \(\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt \approx hg\left( {{x_n}} \right)} \) where \(h = {x_{n + 1}} - {x_n}\)
Assume that g has a continuous derivative that is bounded by B.
\(\left| {g'\left( y \right)} \right| \le B\).
According to the mean value theorem
\(\begin{array}{c}\frac{{g\left( t \right) - g\left( {{x_n}} \right)}}{{t - {x_n}}} = g'\left( y \right)\\g\left( t \right) - g\left( {{x_n}} \right) = g'\left( y \right).\left( {t - {x_n}} \right)\\\left| {g\left( t \right) - g\left( {{x_n}} \right)} \right| \le B\left| {t - {x_n}} \right|\end{array}\)
Now,
\(\begin{array}{c}\left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt - hg\left( {{x_n}} \right)} } \right| = \left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {\left[ {g\left( t \right)dt - g\left( {{x_n}} \right)} \right]dt} } \right|\\ \le \int\limits_{{x_n}}^{{x_{n + 1}}} {\left| {g\left( t \right)dt - g\left( {{x_n}} \right)} \right|dt} \\ \le \int\limits_{{x_n}}^{{x_{n + 1}}} {B\left| {t - {x_n}} \right|dt} \\ = \left[ {\frac{{B\left( {t - {x_n}} \right)\left| {t - {x_n}} \right|}}{2}} \right]_{{x_n}}^{{x_{n + 1}}}\end{array}\)
\(\begin{array}{c} = - \left[ {\frac{{B\left( {{x_n} - {x_{n + 1}}} \right)\left| {{x_n} - {x_{n + 1}}} \right|}}{2}} \right]\\ = \frac{{B{h^2}}}{2}\end{array}\)
Let \(M = \frac{B}{2}\) then
\(\left| {\int\limits_{{x_n}}^{{x_{n + 1}}} {g\left( t \right)dt - hg\left( {{x_n}} \right)} } \right| \le M{h^2}\)
Let \(a = {x_n},b = {x_{n + 1}}\)
From part (a) the local truncation error of the scheme is \(\frac{{\left( B \right){h^2}}}{2}\) and \(h = \frac{{b - a}}{n}\).
After n steps the result is
\(\begin{array}{c} = h\frac{{B\left( {b - a} \right)}}{2}\\ = O\left( h \right)\end{array}\)
Hence, the sum of the local truncation error arises after n steps i.e., \(O\left( h \right)\).
94% of StudySmarter users get better grades.
Sign up for free