Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q19E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 131
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Building Temperature. In Section 3.3 we modeled the temperature inside a building by the initial value problem (13)\(\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = K}}\,\,\left[ {{\bf{M}}\,{\bf{(t) - T}}\,{\bf{(t)}}} \right]{\bf{ + H}}\,{\bf{(t) + U}}\,{\bf{(t),}}\,\,{\bf{T}}\,{\bf{(}}{{\bf{t}}_{\bf{o}}}{\bf{) = }}{{\bf{T}}_{\bf{o}}}\) , where M is the temperature outside the building, T is the temperature inside the building, H is the additional heating rate, U is the furnace heating or air conditioner cooling rate, K is a positive constant, and \({{\bf{T}}_{\bf{o}}}\) is the initial temperature at time \({{\bf{t}}_{\bf{o}}}\) . In a typical model, \({{\bf{t}}_{\bf{o}}}{\bf{ = 0}}\) (midnight),\({{\bf{T}}_{\bf{o}}}{\bf{ = 6}}{{\bf{5}}^{\bf{o}}}\), \({\bf{H}}\left( {\bf{t}} \right){\bf{ = 0}}{\bf{.1}}\), \({\bf{U(t) = 1}}{\bf{.5}}\left[ {{\bf{70 - T(t)}}} \right]\) and \({\bf{M(t) = 75 - 20cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}\) . The constant K is usually between\(\frac{{\bf{1}}}{{\bf{4}}}{\bf{and}}\frac{{\bf{1}}}{{\bf{2}}}\), depending on such things as insulation. To study the effect of insulating this building, consider the typical building described above and use the improved Euler’s method subroutine with\({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}}\) to approximate the solution to (13) on the interval \(0 \le {\bf{t}} \le 24\) (1 day) for \({\bf{k = 0}}{\bf{.2,}}\,{\bf{0}}{\bf{.4}}\), and 0.6.

The temperature at midnight when \({\bf{k = 0}}{\bf{.2}}\) is approx. \({\bf{68}}{\bf{.385}}\).

The temperature at midnight when \({\bf{k = }}\,{\bf{0}}{\bf{.4}}\) is approx. \({\bf{67}}{\bf{.050}}\).

The temperature at midnight when \({\bf{k = 0}}{\bf{.6}}\) is approx. \({\bf{65}}{\bf{.974}}\).

See the step by step solution

Step by Step Solution

Step 1: Important hint.

To get the result apply Euler’s formula.

Step 2: Find the value of temperature when \({\bf{K = 0}}{\bf{.2}}\).

The given equation is

\(\begin{array}{c}\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = K}}\,\,\left[ {{\bf{M}}\,{\bf{(t) - T}}\,{\bf{(t)}}} \right]{\bf{ + H}}\,{\bf{(t) + U}}\,{\bf{(t),}}\,\,{\bf{T}}\,{\bf{(}}{{\bf{t}}_{\bf{o}}}{\bf{) = }}{{\bf{T}}_{\bf{o}}}\\\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = K}}\,\,\left[ {{\bf{75 - 20}}\,{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - T}}\,{\bf{(t)}}} \right]{\bf{ + 0}}{\bf{.1 + 1}}{\bf{.5(70 - T}}\,{\bf{(t))}}\\\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = 75}}\,{\bf{K + 105}}{\bf{.1 - 20}}\,{\bf{K}}\,{\bf{cos}}\,\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - (K + 1}}{\bf{.5)}}\,{\bf{T}}\,{\bf{(t)}}\\{\bf{T(0) = 65}}\\\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = 120}}{\bf{.1 - 4}}\,{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.7}}\,{\bf{T}}\,{\bf{(t)}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}} \approx 0.6667\) and \({\bf{N = 36}}\).

\(\begin{array}{c}{\bf{f}}\,{\bf{(t,T) = 120}}{\bf{.1 - 4}}\,{\bf{cos}}\,\,\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.7}}\,{\bf{T}}\,{\bf{(t)}}\\{\bf{F = f}}\,{\bf{(t,T)}}\\{\bf{ = 120}}{\bf{.1 - 4}}\,{\bf{cos}}\,\,\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.7T}}\,{\bf{(t)}}\\{\bf{G = f}}\,{\bf{(t + h,T + h}}\,{\bf{F)}}\end{array}\)

Apply initial conditions\({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,T = }}{{\bf{T}}_{\bf{o}}}{\bf{ = 65}}\).

\(\begin{array}{c}{\bf{F(0,65) = 5}}{\bf{.6}}\\{\bf{G(0,65) = 0}}{\bf{.6862}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.6667}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}{\bf{ = 66}}{\bf{.638}}\end{array}\)

Therefore at 0.6667h after midnight which is 12.40 AM, the temperature is approx. 66.638.

Now apply the same procedure for the period of 24h.

Step 3: Get the value for 36 steps.

Since there are 36 steps so by construct a table to get the required result.

Time

\({{\bf{t}}_{\bf{0}}}\)

\({{\bf{T}}_{\bf{o}}}\)

Midnight

0

65

12:40 AM

0.667

66.638

2:00 AM

2

68.073

4:00 AM

4

69.073

6:00 AM

6

70.301

8:00 AM

8

71.484

10:00 AM

10

72.437

12:00 PM

12.001

72.909

2:00 PM

14.001

72.775

4:00 PM

16.001

72.071

6:00 PM

18.001

70.985

8:00 PM

20.001

69.809

10:00 PM

22.001

68.857

MIDNIGHT

24.001

68.385

Step 4: Determine the value of temperature when \({\bf{K = 0}}{\bf{.4}}\).

The given equation is

\(\begin{array}{l}{\bf{T(0) = 65}}\\\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = }}135.{\bf{1 - }}8{\bf{cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}.9{\bf{T(t)}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}} \approx 0.6667\) and \({\bf{N = 36}}\).

\(\begin{array}{c}{\bf{f(t,T) = 135}}{\bf{.1 - 8cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.9T(t)}}\\{\bf{F = f(t,T) = 135}}{\bf{.1 - 8cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.9T(t)}}\\{\bf{G = f(t + h,T + hF)}}\\{\bf{ = 135}}{\bf{.1 - 8cos}}\frac{{{\bf{\pi (t + 0}}{\bf{.6667)}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.9(T + 0}}{\bf{.6667(135}}{\bf{.1 - 8cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 1}}{\bf{.9T))}}\end{array}\)

Apply initial conditions \({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,T = }}{{\bf{T}}_{\bf{o}}}{\bf{ = 65}}\).

\(\begin{array}{c}{\bf{F(0,65) = 3}}{\bf{.6}}\\{\bf{G(0,65) = - 0}}{\bf{.838678}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.6667}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}{\bf{ = 65}}{\bf{.920}}\end{array}\)

Thus, at 0.6667h after midnight which is 12.40 AM, the temperature is approx. 65.920.

Now apply the same procedure for the period of 24h.

Step 5: Get the value for 36 steps.

Since there are 36 steps so by construct a table to get the required result.

Time

\({{\bf{t}}_{\bf{0}}}\)

\({{\bf{T}}_{\bf{o}}}\)

Midnight

0

65

12:40 AM

0.667

65.92

2:00 AM

2

67.01

4:00 AM

4

68.565

6:00 AM

6

70.561

8:00 AM

8

72.667

10:00 AM

10

74.349

12:00 PM

12.001

75.161

2:00 PM

14.001

74.885

4:00 PM

16.001

73.597

6:00 PM

18.001

71.641

8:00 PM

20.001

69.541

10:00 PM

22.001

67.861

MIDNIGHT

24.001

67.05

Step 6: Evaluate the value of temperature when \({\bf{K = 0}}{\bf{.6}}\).

The given equation is at

\(\begin{array}{c}{\bf{T(0) = 65}}\\\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = 150}}{\bf{.1 - 12cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 2}}{\bf{.1T(t)}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}} \approx 0.6667\) and \({\bf{N = 36}}\).

\(\begin{array}{c}{\bf{f(t,T) = 150}}{\bf{.1 - 12cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 2}}{\bf{.1T(t)}}\\{\bf{F = f(t,T) = 150}}{\bf{.1 - 12cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 2}}{\bf{.1T(t)}}\\{\bf{G = f(t + h,T + hF)}}\\{\bf{ = 150}}{\bf{.1 - 12cos}}\frac{{{\bf{\pi (t + 0}}{\bf{.6667)}}}}{{{\bf{12}}}}{\bf{ - 2}}{\bf{.1(T + 0}}{\bf{.6667(150}}{\bf{.1 - 12cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}{\bf{ - 2}}{\bf{.1T))}}\end{array}\)

Apply initial conditions \({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,T = }}{{\bf{T}}_{\bf{o}}}{\bf{ = 65}}\).

\(\begin{array}{c}{\bf{F(0,65) = 1}}{\bf{.6}}\\{\bf{G(0,65) = - 0}}{\bf{.1483}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.6667}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}{\bf{ = 65}}{\bf{.381}}\end{array}\)

Hence, at 0.6667h after midnight which is 12.40 AM, the temperature is approx. \({\bf{68}}{\bf{.38}}1\).

Now apply the same procedure for the period of 24h.

Step 7: Find the value for 36 steps.

Since there are 36 steps so by construct a table to get the required result.

Time

\({{\bf{t}}_{\bf{0}}}\)

\({{\bf{T}}_{\bf{o}}}\)

Midnight

0

65

12:40 AM

0.667

65.381

2:00 AM

2

66.199

4:00 AM

4

68.13

6:00 AM

6

70.825

8:00 AM

8

73.668

10:00 AM

10

75.919

12:00 PM

12.001

76.978

2:00 PM

14.001

76.563

4:00 PM

16.001

74.784

6:00 PM

18.001

72.119

8:00 PM

20.001

69.282

10:00 PM

22.001

67.032

MIDNIGHT

24.001

65.974

Hence, this is the required result.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.