• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q3-3.4-17E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 116
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Problem 16, let I = 50 kg-m2 and the retarding torque be N-mIf the motor is turned off with the angular velocity at 225 rad/sec, determine how long it will take for the flywheel to come to rest.

The flywheel takes to come to rest in 300 sec.

See the step by step solution

Step by Step Solution

Step 1: Find the value of time

The equation is

Idωdt=-T150dωdt=-5ω-10dωω=dt \begingathered-20ω=t+cω(t)=(-t20+c)2\endgathered-20ω=t+cω(t)=(-t20+c)2

Step 2: Apply the given conditions

When ω0 = 225 , c = 15

ω(t)=(-t20+15)2t=20(15-ω(t))

at the moment when flywheel stopes rotating (t)=0,

so, t = 300 sec

Hence, the flywheel takes to come to rest in 300 sec.

Most popular questions for Math Textbooks

Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With

\({\bf{g(t) = f(t,f(t))}}\) , this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .

  1. Show that if g has a continuous derivative that is bounded in absolute value by B, then the rectangle approximation has error\(\left( {\bf{O}} \right){{\bf{h}}^{\bf{2}}}\); that is, for some constant M, \(\left| {\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} } \right| \le {\bf{M}}{{\bf{h}}^{\bf{2}}}\).This is called the local truncation error of the scheme. [Hint: Write \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} {\bf{ = }}\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {\left[ {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right]{\bf{dt}}} \). Next, using the mean value theorem, show that\(\left| {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right| \le {\bf{B}}\left| {{\bf{t - }}{{\bf{x}}_{\bf{n}}}} \right|\) . Then integrate to obtain the error bound\(\left( {\frac{{\bf{B}}}{{\bf{2}}}} \right){{\bf{h}}^{\bf{2}}}\).]
  2. In applying Euler’s method, local truncation errors occur in each step of the process and are propagated throughout the further computations. Show that the sum of the local truncation errors in part (a) that arise after n steps is (O)h. This is the global error, which is the same as the [ss1] [m2] convergence rate of Euler’s method.

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.