• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q3.2-15E

Expert-verified Found in: Page 101 ### Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069 # In Problem 14, suppose we have the additional information that the population of alligators on the grounds of the Kennedy Space Center in 1993 was estimated to be 4100. Use a logistic model to estimate the population of alligators in the year 2020. What is the predicted limiting population? [Hint: Use the formulas in Problem 12.

The estimated population of alligators in the year 2020 is 6572 and the predicted limiting population is 6693.

See the step by step solution

## Step 1: Analyzing the given statement

Given, that in 1980, the population of alligators on the Kennedy Space Center grounds was estimated to be 1500 and it was estimated to be 4100 in 1993 and 6000 in 2006. We have to find estimated population of alligators in the year 2020 and the predicting limiting population.

Here, we have initial population, ${p}_{0}=1500$

${p}_{a}=4100\phantom{\rule{0ex}{0ex}}{p}_{b}=6000$

${t}_{a}=13$ (Because, 1993-1980=13)

${t}_{b}=26$(Because, 2006-1980=26)

## Step 2: Formulas used to find the solution

We will use the following formula to find the estimated population of alligators in the year 2020,

${\mathbit{p}}\mathbf{\left(}\mathbf{t}\mathbf{\right)}{\mathbf{=}}\frac{{\mathbf{p}}_{\mathbf{0}}{\mathbf{p}}_{\mathbf{1}}}{{\mathbf{p}}_{\mathbf{0}}\mathbf{+}\mathbf{\left(}{\mathbf{p}}_{\mathbf{1}}\mathbf{-}{\mathbf{p}}_{\mathbf{0}}\mathbf{\right)}{\mathbf{e}}^{\mathbf{-}{\mathbf{Ap}}_{\mathbf{1}}\mathbf{t}}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}\mathbf{\left(}\mathbf{1}\mathbf{\right)}$

To find the values of and A, we will use the following formulas from problem 12,

${{\mathbit{p}}}_{{\mathbf{1}}}{\mathbf{=}}\mathbf{\left[}\frac{{\mathbf{p}}_{\mathbf{a}}{\mathbf{p}}_{\mathbf{b}}\mathbf{-}\mathbf{2}{\mathbf{p}}_{\mathbf{0}}{\mathbf{p}}_{\mathbf{b}}\mathbf{+}{\mathbf{p}}_{\mathbf{0}}{\mathbf{p}}_{\mathbf{a}}}{{\mathbf{p}}_{\mathbf{a}}^{\mathbf{2}}\mathbf{-}{\mathbf{p}}_{\mathbf{0}}{\mathbf{p}}_{\mathbf{b}}}\mathbf{\right]}{{\mathbit{p}}}_{{\mathbf{a}}}{\mathbf{,}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}\mathbf{\left(}\mathbf{2}\mathbf{\right)}\phantom{\rule{0ex}{0ex}}{\mathbit{A}}{\mathbf{=}}\frac{\mathbf{1}}{{\mathbf{p}}_{\mathbf{1}}{\mathbf{t}}_{\mathbf{a}}}{\mathbit{l}}{\mathbit{n}}\mathbf{\left[}\frac{{\mathbf{p}}_{\mathbf{b}}\left({p}_{a}-{p}_{0}\right)}{{\mathbf{p}}_{\mathbf{0}}\left({p}_{b}-{p}_{a}\right)}\mathbf{\right]}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}{\mathbf{·}}\mathbf{\left(}\mathbf{3}\mathbf{\right)}\phantom{\rule{0ex}{0ex}}$

## Step 3: Determine the values of  p1 and A

We will find the values of p1 and A, using the formulas from equation (2 and 3),

${{\mathbit{p}}}_{{\mathbf{1}}}{\mathbf{=}}\left[\frac{\left(4100\right)\left(6000\right)-2\left(1500\right)\left(6000\right)+\left(1500\right)\left(4100\right)}{{\left(4100\right)}^{2}-\left(1500\right)\left(6000\right)}\right]\left(4100\right)\phantom{\rule{0ex}{0ex}}{{\mathbit{p}}}_{{\mathbf{1}}}{\mathbf{=}}{\mathbf{6693}}{\mathbf{.}}{\mathbf{34}}\phantom{\rule{0ex}{0ex}}{\mathbit{A}}{\mathbf{=}}\frac{\mathbf{1}}{\left(6693.34\right)\left(13\right)}{\mathbit{l}}{\mathbit{n}}\left[\frac{\left(6000\right)\left(4100-1500\right)}{\left(1500\right)\left(6000-4100\right)}\right]\phantom{\rule{0ex}{0ex}}{\mathbit{A}}{\mathbf{=}}{\mathbf{0}}{\mathbf{.}}{\mathbf{00001954}}\phantom{\rule{0ex}{0ex}}$

One will use these values of p1 and A in equation (1) to find the estimated population of splake in the year 2020.

## Step 4: Find the estimated population of splake in the year 2020

To find the estimated population of alligators in the year 2020, we will substitute t=40 and other values from step1 and step3,

${\mathbit{p}}\left(40\right){\mathbf{=}}\frac{\left(1500\right)\left(6693.34\right)}{\left(1500\right)\mathbf{+}\left(6693.34-1500\right){\mathbf{e}}^{\mathbf{-}\left(0.00001954\right)\left(6693.34\right)\left(40\right)}}\phantom{\rule{0ex}{0ex}}{\mathbit{p}}\left(40\right){\mathbf{=}}{\mathbf{6572}}\phantom{\rule{0ex}{0ex}}$

Hence, the estimated population of alligators in the year 2020 is 6572.

Thus, the predicted limiting population is 6693. ### Want to see more solutions like these? 